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Abstract

Streaming and real-time traffics are dramatically booming on the Inter-

net. Innovative and successful business models (such as Skype, Youtube,

IPTV and the forth coming Joost project) may bring new dimensions into

revenues of dot-com and telecommunication industry; however, they also

introduce a threat to ISPs and carriers in terms of scaling their networks

so that they can handle traffic more efficiently and utilize the bandwidth

provided by the DWDM transmission technology. Moreover, to ensure that

customers who pay more get more priority for their traffic, QoS guaran-

tees are vital parts of bandwidth management. When more real-time traffic

is injecting in networks, handling bursty traffic and jitter is increasingly

important. However, as pointed out in several researches, when 35% of

link capacity is streaming traffic, current QoS Internet mechanisms start

degrading network utilization. Since current QoS mechanisms do not fully

address these issues, there is a need for new approaches to solve these prob-

lems.

The thesis focuses on important aspects of Time Driven Switching (TDS)-

Fractional Lambda Switching (FλS). TDS-FλS architecture provides guar-

anteed QoS, and it is highly scalable and compatible to the current In-

ternet architecture. In TDS-FλS, a common time reference (CTR) and

pipeline forwarding are used to deliver traffic flows end-to-end. Thus, the

header processing overhead is eliminated and no or few buffers (for en-

abling scheduling delay) at switching nodes are required. TDS-FλS is a

novel technology offering a networking paradigm with no congestion, no

jitter, no packet loss, but many open issues still need investigations.

In the first part of the thesis, we discuss the use of tunable laser and

propose some related architectures to realize all-optical switches that enable



sub-wavelength granularity switching. The design objective is minimizing

node’s hardware complexity while maximizing node’s scheduling flexibility

so that a designed node has a low or null space blocking. Notably, we prove

that one design is strictly non-space blocking with hardware complexity (in

terms of counting switching elements) equivalent to that of a Clos network,

known to be the minimal complexity non blocking architecture.

The remaining part of the theoretical work of this thesis is dedicated to

the analysis of the blocking performance. Thought it has been conjectured

that TDS-FλSs yield low blocking under high load conditions, no formal

proof has been produced so far. The objective of this research track is

a comprehensive blocking analysis under various contexts and dependent

parameters such as load, hop-length, possible scheduling delay, time-cycle

size, etc. As the time dimension is critical in TDS-FλS, blocking in time-

domain (or time-blocking) is a subject of interest. Since a switch can have

a space-blocking fabric, both space and time blocking should be analyzed

jointly. However, the twist of space and time blocking makes it extremely

complex to analyze. We present in this work the case where switches are

strictly non-space blocking so that we need to tackle only time-blocking.

We start presenting a complete analysis of time-blocking probability of a

stand-alone strictly non-space blocking switch under all possible scheduling

delay schemes under given load assumptions. This initial analysis helps

to obtain some fundamental combinatorial observations and results that

are later used to study the time-blocking probability of a multi connected

switches.

When a number of strictly non-space blocking switches are connected

and under zero scheduling delay scheme, it is almost straightforward to

derive a closed form formula of blocking probability. On the other hand,

for non-zero scheduling delays, the exact solution is possible based on the

stationary solution of the Markov chain. However, for large systems, the
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computation is impractical because of extreme complexity. Using some re-

laxations, we successfully derive upper and lower bounds, which can be used

to capture a closed approximation of time-blocking probability. To evaluate

the approximation, we compare various numerical results and simulations.

Since in FλSs, a link comprises multiple optical channels, we extend the

analysis for this case.

Finally, a TDS prototype and its FPGA-based controller is introduced.

The prototype implemented from off-the-self components confirms the prac-

tical aspect of TDS technology and its properties in terms of being very

scalable and offering loss-jitter-congestion-free networks.

Keywords

[time-driven switching, fractional lambda switching, tunable laser, optical

networks, optical networking, blocking analysis, combinatorics]
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Chapter 1

Introduction

Bandwidth-hungry applications are growing with the faster pace than ever.

These are applications ranging from academic and academic purposes to

recreational ones. Scientists seeks fast communication, exchange, back-up,

and distribution of huge amount of raw data gathering from biology sci-

ences, to astronomical events, to nuclear tests, to grid computing. Citizens

seek out multiple media centers for their entertainments. Recreational ap-

plications are abundant and streaming-oriented: high quality streaming

music and clips; online and interactive video game; live streaming sport

events; video contents. Looking back through the years, we can clearly see

that online streaming is becoming more widespread than ever.

Recreational applications alone create scaling problems to MAN/WAN

networks. The problems of MAN/WAN networking do not reside in the

network transmission technology as abundant dark fibers are available, and

each fiber can carry up to multiple Tbit/s of traffic. On the one hand, the

problems somehow still stay in the last-mile (or first-mile) networking as

most access technologies are lag behind the optical ones in terms of speed

and available bandwidth. On the other hand, the problem lies in switching

and routing architectures than can not be scaled to meet the growth of

bandwidth demand.
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V.T.Nguyen

The picture gets even worse as QoS traffics are also exploding. To

ensure that customers who pay more get more priority for their traffic,

a strict QoS guarantee must be a vital part of bandwidth management.

When more real-time traffic is injected in networks, handling bursty traffic

and jitter is increasingly important. However, as pointed out in several

researches, when 35% of link capacity is streaming traffic, current QoS

Internet mechanisms start degrading network utilization. Since current

QoS mechanisms do not fully address these issues, new approaches are

needed to solve these problems.

Specifically, current switching and routing architectures are about to

reach the limit because of heavy overhead remaining in systems. The

problem is more severe if multiple streams are mixed and thus complex

queueing mechanisms must be set up to handle various levels of prior-

ity. Moreover, at optical layer where the DWDM technology mature,

sub-wavelength switching is still not ready, thus bringing more burdens

to packet switching nodes. This is because various end users may have

to share one optical channel (a wavelength) in the sense that their traffic

must be statically multiplexed/demultiplexed at ingress/egress nodes, and

must be handled by switching nodes in core networks.

This thesis aims at presenting some research contributions for a promis-

ing sub-wavelength technology, which utilizing time helps removing the

overhead of header processing. The technology is called time-driven switching

(TDS) in general. In the optical domain, the technology is known as Frac-

tional Lambda Switching (FλS). FλS is suitable for both MAN and WAN

networks.
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CHAPTER 1. INTRODUCTION

1.1 Problems, solutions and thesis outlines

Sub-wavelength switching is not a new concept in the area of optical net-

working. For examples, optical burst switching (OBS) [51, 69], optical

packet switching (OPS) [62] and some others time slot interchange (TSI)

[8, 9, 12, 15, 25, 28, 29, 32, 56, 71, 64, 65, 77] architectures have been

proposed in the past years. However, as will be discussed in Chapter 2,

these architectures still lacks of some important points that hinder them

to be deployed into real networks. A detail introduction to TDS-FλS is

also presented in Chapter 2.

Chapter 3 of the thesis focuses on proposing some node designs for

FλS. The key point is that tunable lasers are used to allow easy and fast

wavelength swapping. The combination of swapping wavelength in space

domain and switching in time provides specific characteristics of FλS.

Since TDS-FλS uses time as a main criteria for guiding traffics end-

to-end, analyzing blocking performance in time-domain is a mandatory

issues. Chapters 4 and 5 discuss and derive results on this challenging

issue. In Chapter 4, the problem of time-blocking probability in TDS

switches is formulated and analyzed. The main result of Chapter 4 is the

time-blocking probability analysis for a stand-alone switch as a function of

the number of possible scheduling delay z and the loads (K, bi) and (K, bo).

In addition, the thorough combinatorial analysis allows some fundamental

observations and results that are later used to study the time-blocking

probability of multi connected switches (i.e., multi-hop) in Chapter 5.

In Chapter 5, a closed formula of time-blocking probability for zero

scheduling delay is presented. On the other hand, for nonzero scheduling

delay, we explain that an exact solution requires a stationary solution of

Markov chain, which is feasible only for a small number of time-frames

per time-cycle. For large numbers, we present the upper and lower bound
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1.1. PROBLEMS, SOLUTIONS AND THESIS OUTLINES V.T.Nguyen

analysis. The average of the two bounds finally yields a very good approx-

imation of time-blocking probability.

Proving that TDS-FλS technology is feasible and can be really deployed

in future networks is the last topic of this thesis. We report in Chapter 6 the

successful experiment of the first prototype TDS switching node using off-

the-shelf components. While building a prototype requires an integration of

various lab works, this chapter focuses on the implementation of a FPGA-

based controller - the brain of the switching node.

Chapter 7 concludes and discusses the thesis and the 3-year research

work. We also highlight some extensions for the future of FλS networking

and researches.

Finally, the appendices delivers proofs of some complex formulas pre-

sented in the thesis.
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Chapter 2

Sub-wavelength switching

In this chapter, we first introduce to some key optical components and

devices, such as tunable lasers, wavelength converters, switching elements.

These are used in designing switch nodes developed later in this work.

Besides, a bunch of other optical components such as multiplexing (MUX),

de-multiplexing (DeMUX), star coupler, splitter and combiner, etc should

be discussed as well. However, they are matured and commercial products

are well set. References to these devices are flourish. Thus we omit to

discuss them in detail in this work.

Next, we present a detail introduction to fractional lambda switching

(FλS), which utilizes global time Universal Time Coordinated (UTC) for

network synchronization. FλS is a novel proposal for the management of

optical networks with sub-wavelength granularity. FλS reduces the com-

plexity of switching and eliminates the need for header processing, which

is a major open problem in realizing all-optical networks. Consequently,

the dynamic all-optical networking with FλS is viable with state of the art

optical components.

Finally, the chapter ends up with brief reviews of other related works

for sub-wavelength switching in optical networks. Those are OBS, OPS,

and several time-slot wavelength techniques.
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2.1. OPTICAL COMPONENTS AND DEVICES V.T.Nguyen

2.1 Optical components and devices

2.1.1 Tunable transceiver

Transceivers play vital roles in optical networks. In the past, when tunabil-

ity was not possible due to immature technology, fixed transceivers were

used. However, recently, advanced technologies in optics industry allow

transceivers to tune their working wavelengths in dynamic ranges aligned

with international telecommunication union (ITU)-T grids [1]. The de-

ployment of tunable transceivers helps to significantly reduce operation

costs of networks, and to boost the deployment of a dynamic configuration

networks. For example, instead of placing multiple fixed transceivers for

backing up multiple working wavelengths, it may be possible to use only a

single tunable transceiver with its tuning range covering all working wave-

lengths, thus, saving cost significantly. In reality, a tuning transceiver is

an integrated device where its components are a tunable laser (for trans-

mission) and a tunable filter (for receiving).

Fast tuning transceivers are desired for advancing to sub-wavelength

switching networks such as FλS and later OPS, where tuning time is

bounded by ms or ps. Pertaining to our switching node design for FλS

networks, in this section, we aim at introducing promising techniques that

allow fast tunability.

Tunable laser

Plainly, a tunable laser is a laser that can tune its transmitted wavelength

in a bounded dynamic range through some simple control functions. A

tunable laser has the basic structure as that of a fixed laser. Thus, tuning

mechanisms can be categorized as following:

• Electrical tuning: the current is injected into the wavelength selective

reflector of the laser to change the refractive index, resulting in the
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CHAPTER 2. SUB-WAVELENGTH SWITCHING

change of the peak wavelength for transmission. Electrical tuning

allows the tuning speed of about few ns.

• Thermal tuning: the laser sample is heated to change the refractive

index. The thermal response is about 0.1 nm/K for an InP telecom

laser emitting around 1,550 nm. Due to the slow thermal response,

the tuning speed of thermal tuning is in the ms time scale. Intel is

known to support external-cavity laser (ECL) thermal tunable laser

that tuning speed is 10 s [49].

• Mechanical tuning: the emitted wavelength is changed by mechani-

cally changing the cavity length or the angle of incidence of the light

to the reflector. The tuning speed is bounded in a scale of ms. Me-

chanical tuning is the best among three mechanisms in terms of large

tuning range. However, the drawback of this mechanism is the com-

plex fabrication and packaging due to micro-mechanical sensitivity.

Besides tuning speed, there are other specifications to compare per-

formances of tunable lasers. These parameters are optical power, wave-

length accuracy, relative intensity noise (RIN), side-mode suppression ratio

(SMSR), power dispersion, tuning range, packaging issue, etc. Neglecting

tuning mechanisms, there are various technologies to implement tunable

lasers, such as monolithic distributed Bragg reflector (DBR), distributed

feedback (DFB) array, and ECL [3, 43]. Excellent categorizations, reviews

of these technologies and commercial products can be found in [14, 38, 59].

In [63], a widely tunable fast-switching laser (electrical tuning) module

that accesses 64 ITU channels with 50 GHz spacing and switches wave-

length in under 50 ns was reported. In [78], a less than 6.8 ns tuning

time of a tunable laser based on adjusting different bias currents of Fabry-

Perot (FP) lasers was presented. Though these fast tuning tunable lasers

still face some limits such as unbalanced output power for different wave-
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Figure 2.1: No bit-stream stopping with tunable laser controlled by UTC

lengths and narrow tuning range, high power dispersion, wavelength drift-

ing, etc. Scientists are working on to overcome these issues. It is believed

that wide and accurate tuning lasers will soon meet the same specifications

of fixed-wavelength lasers.

The use of tunable lasers (see Fig. 2.1) in [79] is similar to that of FλS

node designs in Chapter 3. There is no bit stream stopping in the design.

A part of the incoming signal is tapped to drive and control the tunable

laser. Another similar usage of tunable lasers in designing OPS nodes was

reported in [36].

Tunable filter and tunable photodetector

As tunable lasers and wavelength converters, tunable filters are important

for the deployment of all-optical networks in future. Tunable filters act as

wavelength selectors at optical add-drop multiplexer (OADM) and egress

nodes. Conventional techniques to implement tunable filters are based

on FP and Mach-Zehnder (MZ) interferometers, acoustooptical tunable

filter (AOTF) and fiber Bragg grating (FBG) [60].

In connection to sub-wavelength switching networks such as OBS, OPS

and fractional lambda switching (FLS), fast tuning filters are strongly re-
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quired. There have been rich researches in developing fast tuning filters,

notably are digitally tunable optical filter (DTOF) techniques based on

using thin film filter (TFF), torsional tunable filter (TTF) [42], semicon-

ductor optical amplifier (SOA), arrayed waveguide grating (AWG), or the

combination of them. A category of filtering techniques and their charac-

teristics can be found in [22].

Besides tunable filters, tunable photodetectors are also desired to realize

fast sub-wavelength switching at the receiver sides (i.e., egress nodes). Sev-

eral researches recently exposed the implementation of fast and wide-range

tunable photodetectors [16, 21, 70].

2.1.2 Wavelength converter

An all-optic wavelength converter is a device capable of mapping the infor-

mation from a given incoming wavelength to a desired outgoing wavelength

without stopping the bit-stream and without the E-O-E conversion. There

are various implementations of wavelength converters including: optical

gates comprised of a photodiode and electroabsorption modulator (EAM)

[80]; cross-phase modulation (XPM) in SOA and fiber [61]; and cross-

absorption modulation (XAM) of EAM [19, 30]; cross-gain modulation

(XGM) [11]; four-wave mixing (FWM) in SOA or in semiconductor-fiber

ring (SFR) [41].

Conversion technique using XGM has an advantage in terms of com-

pactness since it can be implemented in a single SOA. However, it faces

several problems such as low conversion speed (determined by gain re-

covery time), limited extinction ratio, relatively large spectral chirping

and inverted coding operations. Meanwhile, wavelength converters using

XPM in SOA have several advantages: very fast conversion speed, possi-

ble up/down conversions without degrading the extinction ratio. A brief

review of these techniques can be found in [73].
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Some of experiments show remarkable achievements, for example, the

experiment in [80] showed a 25 nm dynamic conversion range with re-

markable speed (in the order of ps), though the power penalty of this

wavelength converter is high (up to 2.1 dB). However, like tunable lasers,

wavelength conversion techniques still face some serious issues such as

power penalty level, packaging, power consumption, stable and accurate

tuned-wavelengths, etc. Usually, there are tradeoffs between various de-

sign requirements. Photonics physicists and manufacturers are carrying on

extensive researches and efforts to realize commercial products for future

optical networks.

Finally, we note that switching nodes proposed in Chapter 3 of this work

use tunable lasers as one of a major components in their designs. However,

once wavelength converter’s industry matures, all tunable lasers should be

replaced by wavelength converters to realize all-optical FλS.

2.1.3 Switching element

A simple all-optical switching element can be implemented based on SOA

as following. An SOA gate is an array of devices monolithically integrated

on the same substrate and used as a gate. When injected current in an

SOA is high, it passes light through with some amplification. When in-

jected current falls to near zero, it blocks the light. On the other words,

the simplest method to control an SOA gate is by turning the device cur-

rent ON or OFF. The great advantage of SOA gates is that they can be

integrated to form gate arrays. Thus, an SOA array can act as a switching

module.

The switching time of a SOA gate is of the order of 100 ps. For instance,

in [24], the technique (called preimpulse step-injected current PISIC) was

reported. By applying PISIC, ON/OFF switching time of bulk SOAs was

reported to reduce to 0.2 ns, and can be further reduced to the order of
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tens of ps. In [37], the ultra-fast optical gate monolithically integrating

a uni-traveling-camer photodiode and a traveling-wave electroabsorption

modulator (TW-EAM) was reported, exhibiting a minimum gate opening

time of 2.3 ps with an extinction ratio of 14 dB and 3.0 ps with 19 dB,

respectively.

In general, the basic problem of all-optical switching element is not the

switching speed but the packaging issue, since constructing a switching

node may require thousands of switching elements. The integration of

large amount of SOA-based switching elements into photonic integrated

circuit (PIC) devices requires more researches and progress in photonics

physic.

In the strictly non-space blocking design for FλS later proposed in this

work, a number of active ON/OFF switching elements are required. It is

also believed that such basic switching elements are essential components

for designing OPS nodes in future all-optical networks.

2.2 Fractional lambda switching

Multi-wavelength optical networks have been widely deployed. Wavelength-

routed networking [54] has been the subject of research for many years.

However, the typical optical switching bandwidth granularity has been the

entire optical channel – i.e., the whole lambda (λ). Consequently, with

such design it is only possible to allocate the whole optical channel (λ)

capacity or nothing. Switching a whole optical channel is often (very) in-

efficient, since each optical channel has a capacity ranging from 2.5 Gbit/s

to 100 Gbit/s and can accommodate a very large number of conventional

IP sessions/connections. Thus, it is more bandwidth efficient if an opti-

cal channel can be partitioned into a number of sub-lambda or fractional

lambda channels.
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A single wavelength can carry a huge bandwidth that is much larger

than the bandwidth demand of a single user. Grooming the traffic from

multiple users at the end-points of optical channels is required to im-

prove the throughput of wavelength routed networks and obtain an ef-

ficient use. However, traffic grooming is an expensive operation, it in-

troduces additional delay, and it is complex since traffic rivulets come

from different sources with different constraints (e.g., quality of service

(QoS) requirements). One possible solution is the implementation of ro-

bust asynchronous IP-packet switching at each core node. This seems to

be an unattractive approach toward the goal of realizing an all-optical net-

working, since optical-electronic-optical conversion is required. IP-packet

switching architectures require huge buffering and introduce large delays.

Therefore, there are real needs for some practical implementations of sub-

wavelength switching.

Fractional lambda switching (FλS) (also known as TDS) [6, 7, 27, 48] is

a novel network architecture for the management of optical networks with

sub-wavelength granularity. FλS allows dynamic switching fractions of

wavelength in heterogenous and meshed networking environment. FλS of-

fers deterministic performances with low implementation complexity, hence

scalability.

In FλS networks, every working wavelength is partitioned into time-

frames, grouped into time-cycle, which are coordinated by using a common

time reference (CTR). Given the demand for a connection between a source

and destination a fractional lambda pipe (FLP) occupying an appropriate

number of time-frames should be scheduled to satisfy the bandwidth re-

quest. At each FλS network node, time-frames can be switched from input

channels (wavelengths) to desired output channels, but no or very limited

buffering is possible. Therefore, FλS can be seen as an ideal architecture

to realize all-optical networks.
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The principle underlying FλS networks is pipeline forwarding, a method

known to provide optimal performance independent of specific implemen-

tation and widely used in manufacturing and computing. The necessary

condition for pipeline forwarding is having a CTR, which in the context of

this work is global time-of-day or UTC with proper accuracy.

2.2.1 Timing principle

UTC (coordinated universal time, a.k.a. Greenwich Mean Time - GMT)

provides phase synchronization and time-of-day with identical frequencies

everywhere. UTC can be easily obtained for a low cost from satellite

systems such as GLONASS, GPS or Galileo.

FλS requires phase synchronization (i.e., time-of-day), which is entirely

different than the very accurate frequency synchronization required by

SONET/SDH. What is required for FλS is that the time at any two points

around the globe will be within maximum deviation of a few microseconds.

Specifically, FλS utilizes the UTC second that is partitioned into a prede-

fined number of time-frames (time-frames). Time-frames can be viewed as

virtual containers for multiple variable-length IP packets that are switched

as a whole at every TDS switch. The manners in which IP packets within

time-frames are switched from inlet to outlet depend on UTC. Namely, for

every time-frame within the UTC second there is a well defined switch con-

figuration (i.e., inlet/outlet permutation), which does not drift in time, and

consequently, enables deterministic performance and low implementation

complexity.

A UTC second is partitioned into time-frames. Time-frames are the

basic for scheduling data unit throughout the FλS network as discussed

later. A group of K contiguous time-frames forms a time-cycle (TC). L

contiguous time-cycles are grouped into a super cycle that is equal to one

UTC second.
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Figure 2.2: Division of an UTC second in TDS/FλS.

An example of UTC time partitioning is shown in Fig. 2.2, where K =

1000 and L = 80.

In FλS, all time-frames are aligned with UTC at the inlet ports prior to

switching. After alignment, the delay between inlets of any pair of switches

is an integer number of time-frames, which is the necessary condition for

pipeline forwarding.

2.2.2 Forwarding schemes: zero vs. nonzero scheduling delay

Typically, three types of delay present in FλS networks:

• propagation delay: this is common delay in any communication net-

work as signals traverse through communication links with limited

velocity.

• alignment delay: since the propagation delay is not an integer number

of time-frames, a UTC alignment subsystem is used to round up the

delay to an integer number of time-frames at every FλS switch. Thus,

the alignment delay is one time-frame duration.

• scheduling delay: this delay varies depending on forwarding mecha-

nisms (discussed below) and a buffering scale deployed at each switch-
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ing node.

FλS defines two types of time-frame forwarding mechanisms with the

corresponding maximum scheduling delays:

Immediate forwarding (IF): — upon the arrival of each time-frame to

a TDS switch, the content of time-frame (i.e., IP packets) is scheduled to

be “immediately” switched and forwarded to the next switch, as shown in

Fig. 2.3. Hence, excluding the alignment delay and the propagation delay,

IF requires zero scheduling delay. Henceforth, we use two terms, IF and

zero scheduling delay, interchangeable.

Figure 2.3: Illustration of IF and NIF in the time domain.

Non-immediate forwarding (NIF): — which requires that the content

of time-frame is delayed one or more time-frames at the FλS switch (i.e.,

non-zero scheduling delay). Let us assume that, at each switch inlet there

is a buffer for z time-frames. (Note that each buffer can be either an optical

delay line or a solid state memory). Thus, the content of each time-frame

arriving to the TDS switch can be buffered for an arbitrary number kz

time-frames (0 ≤ kz ≤ z) before being forwarded to the next switch, as

shown in Fig. 2.3, consequently, the maximum scheduling delay is z time-

frame durations. (Note that NIF does not exclude IF.) Henceforth, we use

two terms interchangeable: NIF and nonzero scheduling delay.

In FλS, prior to data transmission between a source node and a desti-

nation node, a FλP must be established between them. A FλP p is defined
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as a predefined schedule for switching and forwarding certain number of

time-frames per time-cycle (or super cycle) along a path of subsequent FλS

switches. The FλP capacity is determined by the number of pre-allocated

time-frames in every time-cycle (or super cycle). Note that in NIF we im-

ply “arbitrary” only for FλP establishment phase (i.e. while searching a

schedule for a given FλP).

2.2.3 Alignment and switching

To obtain a simpler switching control and higher switching fabric utiliza-

tion that is independent of data unit format and switching technology, all

switching data units have the same size (i.e., time-frame duration) and are

aligned to UTC. This allows the transfer of all switching data unit from

inlets to outlets starts and ends concurrently.

Figure 2.4: Optical alignment subsystem in a FλS node.

Though time-frames are aligned to UTC at transmission sides of all

nodes, time-frames arriving at inlets of a FλS switch are usually not

aligned. This is simply because the propagation delay across links between
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nodes are not the integer number of time-frames duration. Therefor, ar-

riving time-frames at inlets of a switch must be aligned to UTC prior to

being transferred through switching fabric as depicted in Fig. 2.4. The

other way to cope with this issue is to arrange link spans connecting FλS

nodes to be equal to a multiple of the time-frame duration.

Figure 2.5: An alignment subsystem using three FIFO queues [7].

As shown in Fig. 2.5, an alignment subsystem [7] can be realized using

three FIFO queues with mutually read and write access. With this align-

ment subsystem, the control is simple and no memory access speedup is

required since a buffer is never read or written at the same time.

The switching control is simple since switching configuration change

once per every time-frame, and the pattern reoccurs after a time-cycle.

The switching pattern is also known in advance as the set of all schedules

at the switch for established FλPs going through it, thus, no switching

speedup is required and there is no output contention.

2.3 Sub-wavelength switching in optical networks

In this section, we review other architectures attempting sub-wavelength

switching, including OBS, OPS, time and wavelength interleaving ap-

proaches like time-domain wavelength interleaved network (TWIN), time
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slot interchange (TSI).

2.3.1 Optical packet switching

With almost a half of century development (the packet switching concept

was first discovered by Paul Baran in the early 1960’s, which then stepped

toward the ARPANET, the first packet switching network), packet switch-

ing technologies have archived astonishing results as now the world is fast

and highly connected by packet switching infrastructures. However, it

seems that electronic packet switching almost reaches its limits as does the

Moore’s law in electronic domain.

In the mean time, what is fast now is forseeably slow in future as the

matter of fact that traffic injections into the Internet keep blooming expo-

nentially because of the pressures of wide deployments of VoD, interactive

games, IPtv, grid computing applications, etc. While DWDM technol-

ogy allows up to hundreds of Tbit/s per transmission link, the bottleneck

is obviously the limit of electronics packet switching technologies. They

are not fast enough to catch up the DWDM transmission technology and

their limits are seen. Thus, an OPS network [62] is the ultimate goal for

all-optical networking.

As its name, OPS is not something strange and far different from its

ancestor - the packet switching in electronic domain. All what is different

is that OPS - an asynchronous network aims at processing everything at

the photonic level. For instance, in stead of using electronic random access

memory (RAM) to store packets awaiting for processing and/or forward-

ing, OPS uses optical random access memory (ORAM). Packet header

processing will be also carried out at the optical level. All electronic pro-

cessor and devices are going to be replaced by corresponding optical ones

in order to avoid electronic limits.

Ideally, all advances in asynchronous packet switching can be straight-
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forwardly applied to OPS and advances pay off complexity levels. Unfortu-

nately, if ever do photonic technologies not mature enough, the complexity

is multiplied. And this seems to be the picture of OPS for substantial

number of years, for some tens or twenty more years or even longer. At

least, two key technological hurdles must be overcome: realizing large asyn-

chronous ORAM and asynchronous optical packet header processing, while

ensuring adequate optical power budget and signal to noise ratio.

If these two key technologies mature, there is still a question postured

such as how to completely stay away of electronic domain while the con-

trols of all optic devices are done by electronics. And the controller of

OPS switch fabrics, will it be all optical processing or electrical/electronic

processing?

2.3.2 Optical burst switching

While consistently waiting for the birth of pure OPS networks, optical

burst switching (OBS) [51, 69] was proposed as a middle stage. OBS can

be seen as a special OPS where “large packets” (or bursts) are used. OBS,

thus, is also an asynchronous switching technology. A burst accommodate

several (terms of hundreds) of packets from different sources. In OBS,

control packets are forwarded in a control channel to configure switching

nodes before the arrival of corresponding data bursts, hence, reducing the

requirement of optical buffers.

Though OBS is interesting and some protocols were defined for it [20,

74], the behavior of burst switching as an asynchronous switching system

makes it hard to implement and control switching fabrics when the traffic

load is moderate to high. This consequently leads to high loss or low

throughput networks as reported in many researches [34, 39, 40, 50, 67].

Besides, grooming traffic into bursts [23, 50] at ingress nodes of OBS

networks and contention resolutions [26, 75] for bursts inside the OBS
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networks are two other difficult issues.

All in all, slotted OBS/OPS [5, 52] were also studied. However, they

all lacked of discussion of timing issues (e.g., how to obtain accurate syn-

chronization through out network wide). Moreover, they were not pipeline

forwarding, thus high overhead is another issue that make them not scal-

able.

2.3.3 Time-domain sub-wavelength switching

In the past ten years there were a number of works on combining WDM

with time division multiplexing (TDM) [25, 28, 29, 32]. None of these works

was using UTC with pipeline forwarding, as discussed in Section 2.2.1, and

did not provide the necessary detailed analysis of critical timing issues.

Specifically, regarding the accumulation of delay uncertainties or jitter and

clock drifts, which is solved by using UTC with pipeline forwarding, as

discussed in Section 2.2.2.

In [29], an optical time slot interchange (TSI) utilizing sophisticated

optical delay lines is described with no detailed timing analysis. In [32]

and [25] two experimental optical systems with in-band master clock dis-

tribution and optical delay lines are described, with only limited discussion

about timing issues. In [28] a system with constant delays and clocks is de-

scribed, which can be viewed as a close model of what we define immediate

forwarding (in Section 2.2.2), however, no timing analysis and no consid-

eration of non-immediate forwarding (see Section 2.2.2) were presented.

Following are some other related works, which used tunable laser in

their network node design or implicitly utilize UTC in their network syn-

chronization.
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TWIN

More recently, the idea of utilizing UTC in order to forward bursts of data

in optical networks was proposed in the time-domain wavelength inter-

leaved network (TWIN) architecture [56, 71]. TWIN proposed to use fast

tunable lasers at the network edge nodes while the core switching nodes

are selective wavelength routers. Each edge node is equipped with a unique

wavelength receiver. When one edge node transmits to another edge node

it tunes its tunable laser to the unique wavelength receiver of that node.

The TWIN architecture requires network-wide scheduling algorithms in

order to ensure that each unique tunable receiver receives only one (burst)

transmission at a time. Consequently, TWIN has limited wavelength reuse

and can only efficiently accommodate bursts that are larger than the end-

to-end propagation delay. Thus, TWIN may be suitable for local area

networks. The link delay issue becomes particularly significant if wide-

area networks (WANs) are considered.

It is also very worthy to note that if the TWIN architecture operates

with near zero propagation delay and source-destination route length is two

(i.e., only one core node), it will be equivalent to our second FλS tunable

laser switch design (called WR-FλS) presented in Section 3.4 - Chapter 3).

WONDER

RINGO [9, 15] and WONDER [8, 12] dedicated to the design and exper-

iments of slotted OPS rings for future metropolitan networks. Nodes in

RINGO/WONDER and TWIN share the same designing characteristics:

(i) each node is identified by a specific wavelength λi and it is the unique

node able to receive signal on this wavelength; (ii) each node is equipped

with a tunable transmitter (or tunable laser), which can be fully tuned to

any among all working wavelengths so that it can communicate to all the
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other nodes of the network. Thus, in general TWIN and RING/WONDER

are much similar.

However, RINGO/WONDER differs from TWIN in points of network

synchronization and of MAC layer. While TWIN implicitly use UTC

for synchronizing nodes and nodes transmit signals based on predefined

schedules, RING/WONDER use conventional methods: ; a) nodes are

synchronized by using a dedicated wavelength for conveying synchroniza-

tion signals transmitted by the master node; b) no predefined schedules

are required and nodes must have ability to sense busy/free states of all

wavelengths to avoid transmission collisions.

TSI-WDM

The concept of time slot interchange (TSI) WDM networks appeared in

some papers [64, 65, 77]. In TSI-WDM, a wavelength is partitioned in a

number of time-slots so that multiple source-destination pairs can share

one wavelength.

First, in these works no practical node design is shown. There is no

or lack of discussion on synchronization issues. Second, a TSI device is

capable of rearranging the order of the time-slots passing through it. TSI is

originally stemmed from conventional TDM switching technologies. Thus,

optical TSI requires optical random access memory (ORAM) to store time-

slots. This is not practical since ORAM is not available. Moreover, a TSI-

WDM network is a subcase of FλS where full forwarding is deployed (i.e.,

z-forwarding with z = K − 1).
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Switch Designs Using Tunable Lasers

This chapter presents three novel switch designs that are based on the

use of tunable lasers (which can be replaced in the future with wavelength

converters). The analytical results of scheduling feasibility, which measures

the total number of possible different schedules for each switch design,

are discussed. Then it is shown that the architecture with the highest

scheduling feasibility is strictly non blocking in the space domain.

In addition, we present measures of the switching hardware complexity,

which, for the strictly non-blocking architecture, has the same switching

complexity as Clos interconnection network, i.e., O(N ′√N ′) where N ′ is

the number of optical channel.

3.1 Tunable Laser Principle – Wavelength Swapping

We focus on FλS with tunable lasers introduced in Section 2.1.1 - Chapter

2. In general, the way tunable lasers are used in this work is to change

the wavelength (color) of time-frames that contain IP packets at every FλS

node. When wavelength converters will be available they may replace the

tunable lasers.

This operation can be viewed as wavelength swapping of packets. Namely,

packets are transmitted with λ1 over the first optical link, then with λ2 over
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the second optical link and so on. The operation of swapping wavelength

(color) is equivalent to label swapping. Obviously, as in label swapping,

packets of different connections (FλPs) should not have the same color

(label) when being transmitted over the same optical link and having the

same time index within the time-cycle.

Note that there is no “stop” of bit streams at switching nodes as we

discussed the usage of tunable lasers in our design is somewhat similar to

[36, 79] (see Section 2.1.1 - Chapter 2).

3.2 Designing criteria

The goal of a switching architecture is keeping complexity and cost at a

minimum level while providing high performance and low blocking proba-

bility for incoming new flows. We introduce three tunable laser based FλS

switches and discuss their hardware cost and complexity, as well as their

suitability for deploying flexible routing strategies.

The performance of flow-based switching is measured by blocking, which

is due to two different phenomena in time driven switching. External-or

time-blocking-is the impossibility of finding a time-frame on a suitable

optical channel on the proper output port to set up a FλP across the

switch. 1 Internal-or space-blocking-is instead the impossibility of setting

up the FλP due to internal constraints of the switch although the proper

resources at the output port are available.

The different tunable laser switch architectures are compared using:

• i) the hardware complexity;

• ii) the performance in terms of scheduling feasibility as defined below

in Def.3.2.1.
1The time-blocking issue is formally formulated and discussed in Chapter 4.
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The scheduling feasibility directly influences space-blocking, although there

is no explicit mathematical relationship between the two; in Section 3.7 we

demonstrate that the architecture with the highest scheduling feasibility is

strictly non-space-blocking.

In order to give consistent and convenient descriptions of the different

switch architectures, the following notations are used:

• C is the link capacity in terms of the number of optical channels

(colors) per optical fiber, which is associated with each input/output

port;

• N is the number of input/output ports (or in-ports/out-ports for

short) per switch;

• r = C/N is the internal connection ratio. For simplicity it is assumed

that r is integer.

• RT is the tuning range of a tunable laser;

• K is the size of time-cycle in number of time-frames;

• h is the route length of a FλP in number of hops.

Additionally we use the following acronyms to identify the building blocks

of the architectures:

• MUX and DEMUX are wavelength multiplexors and de-multiplexors;

they operate between optical fibers with WDM channels and the in-

/out-ports;

• tunable laser is a device with tuning range RT that operates the λ

swapping; TL(n, c) means the tunable laser connected to the c-th

optical channel of in-port n;

• WR is a static wavelength router with fixed permutation pattern;
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• SC is a star coupler, i.e., one-to-n broadcast device; SC(n, c) is the

star coupler connected to the c-th tunable laser of in-port n;

• OO is an ON/OFF switching element; OO(n, c, n′) is the ON/OFF

switching element connecting in-port n with out-port n′ using the

tunable laser c;

• TuF is a tunable filter; TuF(c, n′) filters the output of a star coupler

c toward the out-port n′.

Definition 3.2.1 (Scheduling feasibility). — For a generic FλS the schedul-

ing feasibility is the number of distinct schedules that are available us-

ing time and wavelength swapping. The scheduling feasibility is function

of the forwarding method (immediate forwarding (IF) or non-immediate

forwarding (NIF)), K, C and N , on a given route with h hops (where h is

not a variable for feasibility measure).

A schedule is defined as a possible allocation of time-frames and wave-

length swapping along a given route so that a FλP can be set up. In fact,

scheduling feasibility indicates a relative (not absolute) measure for how

flexible the scheduling can be for each tunable laser switch architecture.

A feasible schedule is not guaranteed to be available at the time of FλP

setup due to the space- or time-blocking (e.g., switching fabric limitation,

contention between multiple setups); however, it is clear that the more the

available schedules are, the less is the chance that it is not possible to find

a non-blocked schedule. The switch architectures studied in this chapter

have four key common parts:

1. WDM de-multiplexers on the in-port side;

2. WDM multiplexers on the out-port side;

3. Tunable lasers at the output of the WDM de-multiplexers;

26



CHAPTER 3. SWITCH DESIGNS USING TUNABLE LASERS

4. A connection network between the tunable lasers and the WDM mul-

tiplexers at the out-ports, which is in essence what distinguishes the

switch architectures discussed in this chapter.

We define the following three switch architectures:

• Tunable laser with fixed connection network (FC-FλS): The fixed con-

nection network consists of point-to-point links from tunable lasers to

out-port MUXs.

• Tunable laser with static wavelength router (WR-FλS): The static

wavelength router does not change its configuration over time.

• Tunable laser with broadcast and select (BS-FλS): The broadcast and

select operation is time dependent and the connection configuration

can change every time-frame.

For the sake of simplicity, we do not show in figures how to implement

buffering. In principle, a tunable laser behaves as an optical-electronic-

optical conversion device. Specifically, the incoming optical signal serial-

bit-stream is converted to electronic signal that is used directly to modu-

late the tunable laser, and thereby, convert back to optical signal without

“stopping” the serial-bit-stream. Thus, buffering can be done optically

with programmable fiber-delay-lines. Note that this is only one possible

tunable laser design.

3.3 FC-FλS: a fabric-less design

3.3.1 Design description

Fig. 3.1 shows the simple design of the FC-FλS for C=4, N=2 which uses

tunable lasers with a fixed point-to-point connection network. DMUX sep-

arates WDM signals into C different wavelengths. Each incoming wave-
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Figure 3.1: An illustration of a 2× 2 FC-FλS switch with C=4 (TLs are coordinated by

UTC time signal, which is not shown)

length is fed to a tunable laser that transmits at any wavelength within

its tuning range RT . The output of each tunable laser is connected to

a predefined out-port. The number of fixed connections between an in-

port/out-port pair is equal to r, i.e., a switch with N=8 and C=16 has 2

fixed connections between any in-port/out-port pair.

Tunable lasers are tuned every time-frame, where time-frames are de-

rived from Universal Time Coordinated (UTC), such that time-frames are

switched from in-ports to out-ports without conflicts at any out-port. Due

to the nature of the fixed connection system, the color of a time-frame after

switching defines the out-port, and hence, it defines the route it takes.

3.3.2 Hardware complexity and scheduling feasibility

The hardware complexity of this design is CN tunable lasers. Each in-port

requires C tunable lasers, corresponding to C channels. The in-port DMUX

and out-port MUX devices are not counted in the hardware complexity

since they are identical for all the designs described in this chapter.
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Scheduling time-frames using FC-FλS is rigid due to the nature of fixed

point-to-point internal connection network. To route a time-frame along a

predefined route path between source and destination, a tunable laser that

receives a signal must tune the output to one wavelength among r. For

simplicity, we assume that lasers have full tunable range, that is RT = C.

With this assumption, the scheduling feasibilities of this design are given

in (3.3.1) for IF, and in (3.3.2) for NIF:

S
(IF )
FC = Krh = K

(
C

N

)h

(3.3.1)

S
(NIF )
FC = Krh(z + 1)h−1 = K

(
C

N

)h

(z + 1)h−1 (3.3.2)

Proof. Eq.(3.3.1): At the 1st hop, to forward a time-frame to the 2nd hop

of the defined route, a time-frame must be carried on 1 of r wavelengths;

each channel has K different time-frames. Hence, there are Kr scheduling

choices for the 1st hop. The following (h − 1) hops are all identical and

there are only r possible schedules at each hop. Scheduling at all hops is

independent. Therefore, the number of possible schedules is given by the

product

{Kr}1st × {r}2nd × ...× {r}hth

of all the possible single hop schedules. {∗}hth is the contribution of hth

hop to the combinatorial result.

Eq.(3.3.2): The 1st hop contribution is equal to that of (3.3.1). For

the other contributions, there are more options to forward a time-frame

thanks to non-immediate forwarding (NIF). A time-frame can be switched

immediately or buffered for up to z time-frames2, before being switched.

Thus, for all hops except the 1st one, there are r(z +1) options to schedule

2Note that NIF does not exclude IF, see Section 2.2.2 - Chapter 2.
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a time-frame. The final result is given by the product

{Kr}1st × {r(z + 1)}2nd × · · · × {r(z + 1)}hth

thus, we yield S
(NIF )
FC .

Note that if z = 0 is applied to (3.3.2), we obtain S
(IF )
FC in (3.3.1). This

asserts that NIF does not exclude IF.

3.3.3 Robustness and practical issues

Though FC-FλS has a simple design with low cost and low control over-

head, a network implemented with FC-FλSs is subject to some disadvan-

tages. First, it is hard to deploy different routing protocols since routing

is rigid due to the nature of fixed internal connection network. Second,

for the IF scheme the scheduling flexibility of this design strongly depends

on the internal connection ratio r, as shown in (3.3.1), requiring many

wavelength channels for good performance.

3.4 WR-FλS: a TWIN-like design

3.4.1 Design description

An example of the design using tunable lasers and static wavelength router

(WR) is depicted in Fig. 3.2. The idea for this design is built on an optical

burst switching (OBS) switch design described in [53]. The key character-

istic of this design is that different in-ports use different sets of channels,

whose size is r and depends on the permutation pattern, to reach the

same out-port. More specifically, in order to switch a time-frame received

by TL(n, c) to out-port n′, TL(n, c) must tune to one among r channels

defined by the designed permutation pattern so that the transmitted time-

frame can reach MUX(n, n′). Two common types for the selection of fixed
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Figure 3.2: An example of 2× 2 WR-FλS switch where UTC time signal is not shown.

permutation pattern are contiguous wavelength selection and randomized

wavelength selection [53].

Note that if the WR-FλS switch architecture is distributed, namely, if

the tunable lasers are connected to the WRs by long optical links, those

tunable lasers can be seen as edge nodes. Such tunable laser are similar

to edge nodes in time-domain wavelength interleaved network (TWIN)

[56][72]. Moreover, if out-ports of WR-FλS are also connected to a center

WR by long optical links, a node that is similar to a core TWIN node is

formed. Thus, we can infer that TWIN and a modified version of WR-FλS

are similar.

3.4.2 Hardware complexity and scheduling feasibility

WR-FλS requires CN tunable lasers, N modules of C × C static WRs,

and N 2 multiplexers at the output of the WRs. The scheduling feasibility

of WR-FλS for both IF and NIF schemes are given in (3.4.1) and (3.4.2):
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S
(IF )
WR = KCrh−1 = K

(
C

N

)h

N (3.4.1)

S
(NIF )
WR = KC{r(z + 1)}h−1 = K

(
C

N

)h

(z + 1)h−1N (3.4.2)

Proof. The proof can be done following the same scheme used to prove

(3.3.1) and (3.3.2). Using WR-FλS, there are always KC options to select

a time-frame for the 1st hop, since no constraint on routing exists. For

the 2nd to hth hops, an incoming time-frame has only r options to reach a

desired out-port, assuming again RT = C. Therefore, the product of all

hop-based components is given as

{KC}1st × {r}2nd × ...× {r}hth

for IF and

{KC}1st × {r(z + 1)}2nd × ...× {r(z + 1)}hth

for NIF. Therefore, we obtain (3.4.1) and (3.4.2). Again note that applying

z = 0 into (3.4.2) we yield (3.4.1) as NIF includes IF.

3.4.3 Robustness and practical issues

Networks using WR-FλS have no constraints on routing, since time-frames

coming to an in-port can reach any out-port. The scheduling feasibility is

still limited by r, which is a strong constraint to the scalability. Although

routing is not limited, space-blocking is possible in this architecture.
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Figure 3.3: BS-FλS, a strictly non-space-blocking architecture

3.5 BS-FλS: a strictly non-space blocking design

3.5.1 Design description

The illustration of BS-FλS design is shown in Fig. 3.3. This design uses

one tunable laser and one broadcast-and-select switching (BSS) component

per channel. A BSS is composed by the combination of a single 1-to-N star-

coupler (SC) and N simple ON/OFF switching elements.

TL(n, c) receives the signal of λc and then transmits using any channel

in its tunable range. The transmitted signal from a laser is broadcast to

all out-ports using the star-coupler SC(n, c) and it is allowed to reach a

single out-port enabling the corresponding ON/OFF switching element to

that port. The BSS design also enables multicasting. All tunable lasers

and ON/OFF switching elements are controlled and coordinated using the

UTC signal.

The BS-FλS design allows a tunable laser to transmit time-frames to

all out-ports. Moreover, BS-FλS has the advantage over WR-FλS that

a tunable laser can transmit time-frames to any out-port using the full

channel range C, assuming RT = C, while WR-FλS only allows using the

small fixed set of channels r. Thus, compared to WR-FλS, BS-FλS has a
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much larger scheduling feasibility.

3.5.2 Hardware complexity and scheduling feasibility

The hardware requirements for BS-FλS design are: CN tunable lasers, CN

star-coupler modules, CN 2 programmable ON/OFF switching elements.

The scheduling feasibility of BS-FλS design for both IF and NIF schemes

are given in (3.5.1) and (3.5.2):

S
(IF )
BS = KCh = K

(
C

N

)h

Nh (3.5.1)

S
(NIF )
BS = KC{C(z + 1)}h−1 = K

(
C

N

)h

(z + 1)h−1Nh (3.5.2)

Proof. For the 1st hop, there are KC options to schedule one time-frame,

since every channel can be routed following any predefined route. For the

2nd to hth hops, a tunable laser can exploit all the C channels to transmit

the signal. In fact, if available time-frames are found at both incoming and

outgoing channels, there is a path to schedule the transmission. Therefore,

the product of all hop-based components for IF scheme is:

{KC}1st × {C}2nd × ...× {C}hth

and for NIF scheme it is:

{KC}1st × {C(z + 1)}2nd × ...× {C(z + 1)}hth

Note that S
(IF )
BS and S

(NIF )
BS are independent from r. The right most

expressions in (3.5.1) and (3.5.2) are only for comparison purposes with

the other architectures.

In term of scheduling feasibility, the BS-FλS design gains Nh times

compared to the WR-FλS design in both IF and NIF schemes. It is also

worthy to highlight the following observations on this design.
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Remark 3.5.1 (If less number of SCs used). Using a single SC per in-port,

then the scheduling feasibility of the BS-FλS design reduces C times.

Proof. Let us assume that all channels of an in-port share a single SC. SC

is a broadcast device, meaning that a signal at a given input is broadcasted

to all outputs. At every time-frame strictly one and only one signal can be

fed to one of the inputs of SC, otherwise there is conflict. Hence, if all C

tunable lasers of an in-port share the same SC, at every time-frame only

one of them is allowed to transmit, therefore resulting in the reduction of

the utilization of the design by C, compared to the design that deploys a

single SC per tunable laser.

Remark 3.5.2 (If design based on filters). A tunable filter per out-port can

be used in replacement of the CN ON/OFF switching elements. In this

case the scheduling feasibility is bounded by:

KC (C ′)h−1 ≤ S
(IF )
Filter ≤ K

(
C

N

)h

Nh

and

KC (C ′)h−1
(z + 1)h−1 ≤ S

(NIF )
Filter ≤ K

(
C

N

)h

(z + 1)h−1Nh

where C ′ = (C −N − 1) ≥ 0.

Proof. Assume that ON/OFF switching elements are removed and outputs

of SC devices are connected to tunable filters (TuF), as shown in Fig. 3.4.

At a given time-frame, TL(n, c) is scheduled to transmit to out-port n′

and TL(m, c) is scheduled to transmit to out-port m′, both using channel

λc′. Consequently, there are conflicts at both inputs of TuF(n′, c) and

TuF(m′, c). Therefore, a given tunable laser must coordinate with all the

other (N−1) tunable lasers that are connected to the TuF for transmitting

to an out-port. In the worst case, a given tunable laser has only C ′ =
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Figure 3.4: One tunable filter replaces N ON/OFF switching elements producing internal

conflicts.

(C −N − 1) channel options, since the other (N − 1) channels are used by

the other tunable lasers. This yields a lower bound of

{KC}1st × {C ′}2nd × ...× {C ′}hth

for IF scheme, and

{KC}1st × {C ′(z + 1)}2nd × ...× {C ′(z + 1)}hth

for the NIF scheme. The internal blocking due to conflicts in the TuF

cannot be accounted for with combinatorial analysis, thus we can only

give the upper and lower bounds of the scheduling feasibility.

3.5.3 Robustness and practical issues

BS-FλS is a strictly non-blocking design in the space domain (see the proof

in Section 3.7). An incoming time-frame always finds the path to be for-

warded to a desired out-port if a free corresponding time-frame is found at

the outgoing channel. The BS-FλS design also allows deploying multicast

and broadcast easily.
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3.6 Comparisons between designs

The comparison among the three switch designs is summarized in TABLE

3.1.

Table 3.1: Comparisons between tunable laser-based FλS switch designs for a given h.

Design Hardware Scheduling Feasibility Routing

NTL NWR NSC NOO IF scheme NIF scheme Adapt.

FC NC - - - - - - K
(

C
N

)h
K

(
C
N

)h
(z + 1)h−1 None

WR NC N - - - - K
(

C
N

)h
N K

(
C
N

)h
(z + 1)h−1N Partial

BS NC - - NC N2C K
(

C
N

)h
Nh K

(
C
N

)h
(z + 1)h−1Nh Full

Parameters to be compared include hardware complexity, scheduling

feasibility and optical routing adaptability. Optical routing adaptability

indicates the freedom of changing the routing wavelength on the same

optical fiber. For instance, the color of a time-frame coming to an in-

port of a FC-FλS node will fit a unique next-hop of that time-frame no

matter of how the corresponding tunable laser is tuned. For a WR-FλS

node, the next-hop of an incoming time-frame can be partially controlled

depending on a fixed configuration of internal WRs. With a BS-FλS node,

the next-hop for an incoming time-frame is fully controllable.

Design components that are the same in all switch designs, such as

WDM-MUX and WDM-DMUX are not shown in this comparison table.

NTL, NWR, NSC , NOO stand for the number of TLs, C × C static WRs,

1-to-N SCs, ON/OFF switching elements, respectively.

Fig. 3.5 shows some plots of the scheduling feasibility S(IF ) and S(NIF )

of the architectures we introduced. The number of time-frames per time-

cycle, K, as well as the optical buffer size z are kept small to avoid numer-

ical problems, since both S(IF ) and S(NIF ) grows exponentially. First, the

graph suggests that the scheduling feasibility may be a good indication of

the switch architecture performance in terms of blocking. Though there is
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Figure 3.5: Scheduling feasibility vs. connection ratio r when z = 2, K = 10, N = 8 and

h = 5.

no mathematical relation between scheduling flexibility and blocking per-

formance, it is clear that for a given h, the larger the number of distinct

schedules is, the better the chance that a schedule can be found, thus im-

proving the overall blocking performance. Second, the graph highlights

the fact that the number of possible FλP schedules in so large that proper

signaling and heuristics must be found to exploit the resources of a FλS

network.

We have discussed how both the FC-FλS and WR-FλS architectures

have limitations in optical routing adaptability, while the BS-FλS can sup-

port any routing algorithm. In the next section, we will show that the BS-

FλS is strictly non-space-blocking. FC-FλS and WR-FλS, instead, have

internal space-blocking.
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3.7 A strictly non-space blocking switch for FλS

In this section, we focus on the more general BS-FλS design, since it has

been proved to have the highest scheduling feasibility in Section 3.6. We

formally prove that this broadcast-and-select design is strictly non-blocking

in space domain. The formal definition of a strictly non-blocking FλS

design in space domain is given following in (Def. 3.7.2). Intuitively, if

there is available capacity at both in-port and out-port (i.e. free time-

frames to satisfy the IF scheme) but the switch can not configure itself to

form a forwarding path (i.e. no more available resource in the fabric), we

see it as the blocking event in space domain.

We assume that at anytime there is at most one setup request to forward

one time-frame from a given inlet and to a given outlet3. For the sake of

clarity, we introduce the following notations:

• tfn,c,k denotes a time-frame k belonging inlet c of in-port n.

• tf ′n′,c′,k′ denotes a time-frame k′ belonging outlet c′ of out-port n′.

• {
tf ′n′,c′,k+1

}
denotes the set of all immediate-forwarding positions (i.e.,

k′ = k + 1) of out-port n′, with assumption RT = C.

We give the following definitions:

Definition 3.7.1 (Schedulable time-frame). — A time-frame tfn,c,k is said

to be schedulable if and only if tfn,c,k is free and at least one time-frame in

the set
{
tf ′n′,c′,k+1

}
is free. A time-frame tfn,c,k is said to be schedulable to

tf ′n′,c′,k+1 if and only if tfn,c,k is schedulable and tf ′n′,c′,k+1 is free. Note that

the definition is valid only for the IF scheme.

3 It is important to distinguish between an “in-port” and an “inlet”, and between an “out-port” and
an “outlet”. In/out-port indicates the fiber port, whereas inlet/outlet indicates a single wavelength or
optical channel.
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Definition 3.7.2 (Strictly non-space-blocking FλS switch). — A FλS

switching fabric is considered strictly non-blocking in space domain if and

only if any connection between a given in-port and a given out-port can

be established immediately to forward an arbitrary schedulable time-frame

without interference with any arbitrary existing connection.

Theorem 3.7.1 (Strictly non-space blocking design). If a time-frame tfn,c,k

is schedulable to tf ′n′,c′,k+1, then the forwarding path

fp |= tfn,c,k → TL(n, c) → SC(n, c) → OO(n, c, n′) → tf ′n′,c′,k+1

is always successfully setup during time-frame k, without any interference

with existing forwarding paths.

Proof. The proof is obtained by showing that violating the setup postulate,

implies that tfn,c,k is NOT schedulable to tf ′n′,c′,k+1. To setup fp, all devices(
TL(n, c), SC(n, c), OO(n, c, n′)

)
involved in fp must be available during

time-frame k.

Let us denote Sk
X the status of device X during time-frame k, that is:

Sk
X =

{
‘0’ if item X is busy during time-frame k

‘1’ if item X is free during time-frame k

• Assume Sk
TL(n,c) =‘0’ ⇒ tfn,c,k is busy, it is not schedulable (violate

the setup postulate).

• Assume Sk
SC(n,c) =‘0’ ⇒ Sk

TL(n,c) =‘0’ ⇒ tfn,c,k is not schedulable.

• Assume that during time-frame k, another tunable laser of a certain

in-port has been scheduled to forward time-frame on channel c′ to

out-port n′, i.e. tf ′n′,c′,k+1 is busy ⇒ tfn,c,k is schedulable but NOT

to tf ′n′,c′,k+1 (violate the setup postulate).
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Therefore, Sk
SC(n,c) =‘1’ and Sk

TL(n,c) =‘1’, implying that Sk
OO(n,c,n′) =‘1’

(i.e, available during time-frame k). Thus all elements evolved in forward-

ing path fp are available during time-frame k. In addition since the de-

fault status of ON/OFF switching element is OFF and only the scheduled

ON/OFF switching element is ON, setting up fp does not interfere with

other existing FλPs.

A tfn,c,k is schedulable only if it is schedulable to at least one time-frame

belonging to the set
{
tf ′n′,c′,k+1

}
, the above theorem implies that a BS-FλS

is strictly non-space-blocking.

Corollary 3.7.2 (Clos equivalency). If N = C then it implies that the

number of inlets/outlets of the switch is N ′=NC=N 2. Therefore the hard-

ware complexity in number of ON/OFF switching elements of the BS-FλS

design is CN 2=N ′√N ′, which is the same as a Clos interconnection net-

work [17] with N ′ inlets/outlets.

This result is significant since the Clos interconnection network is known

to have the lowest switching complexity for strictly non-blocking switch

matrices. Note that the equivalence is meant only for the number of ac-

tive switching elements, since the passive optical broadcast cost cannot be

quantified in the sense of switching complexity.

3.8 Discussions

In this chapter we presented three switch architectures for fractional lambda

switching paradigm. They use tunable lasers (and in the future wavelength

converters). As it was shown, the use of tunable lasers has similar at-

tributes, in the optical domain, to label swapping, in the space domain.

Three switch architectures were presented:

1. Fixed Connection (FC-FλS);
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2. Wavelength Router (WR-FλS);

3. Broadcast and Select (BS-FλS).

While the second architecture can be seen as an equivalency to TWIN,

the first and last architectures are entirely novel and most interesting due

to their characteristics. It is noted that the BS-FλS architecture proposed

in this work also meets tight bound conditions analyzed in [47] for any

strictly non blocking design for WDM switches.

The first architecture, FC-FλS, is fabric-less, since it has no optical

switching element. However, FC-FλS is limited as indicated by the schedul-

ing feasibility measure and it does not allow for flexible routing.

The last architecture, BS-FλS, has been shown to be strictly non-

blocking with the hardware switching complexity that is equivalent to Clos

interconnection network (when C = N), which is the minimal complexity

for strictly non-blocking architectures. The BS-FλS architecture requires

only simple switching elements of 1-by-2.

Furthermore, regarding the optical power budget, the BS-FλS has two

desirable attributes: (i) equal power distribution and (ii) low insertion

loss, e.g. for N = C = 32 - an optical switch with 1024-by-1024 optical

channels - the power loss is 3 log2 32 = 15dB. (This is the broadcast loss

over the 32-by-32 passive optical star.)

42



Chapter 4

Time-blocking analysis: stand-alone

switch

The BS-FλS design introduced in the previous chapter is one among many

possible strictly-non-space-blocking designs. However, even when all strictly-

non-space-blocking switches like BS-FλS are used in a FλS network, there

are still possibilities that a schedule can not be found to establish an end-

to-end FλP. Neglect the case when there is no more capacity to assign

schedule, we refer the possibility of no schedule can be found is blocking

event in time-domain.

This chapter presents a closed-form time-domain analysis of the blocking

probability of time-driven switching (TDS) for the single node case. In this

work blocking is defined as the occurrence in which transmission resources

are available in both inlet and outlet, but there is no schedule. The main

constraints for finding a schedule are: (i) the load and (ii) the maximum

scheduling delay between inlet availability and outlet availability. As the

maximum scheduling delay (buffering) increases the blocking probability is

reduced. The outcome of the analysis in this chapter is the exact blocking

probabilities for all possible maximum scheduling delays, under all load

conditions.

Section 4.1 examines some related works on blocking analysis. Section
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4.2 presents a general discussion on blocking and specialize the problem

for FλS. Section 4.3 presents the overall approach used to compute the

time-blocking probability. Section 4.4 analyzes the blocking problem for

the least complex case when there is only one buffer per inlet. The solution

for general cases is then presented in Section 4.5. Sections 4.6 and 4.7 end

the chapter with some discussions.

4.1 Review of call-blocking performance

Blocking performance analysis has a long history starting with conven-

tional public phone networks deployment [35]. Traditionally, the term

‘call blocking’ was used in previous works on blocking analysis (e.g., in

[10, 33, 57, 81]). ‘Call rejection’ is considered as an event when no more

network resources (e.g., circuits in telephony or radio channels in wireless)

can be allocated to successfully establish a new call. Thus, an analysis

of ‘call rejection’ probability is called ‘call blocking’ probability analysis.

When analyzing ‘call blocking’ probability, traffic patterns and stochastic

distributions are taken into accounted.

However, in this thesis, we do not study the blocking probability at the

call level. A blocking in the time-domain (formally defined in Section 4.2.1)

occurs even when there are available network resources (i.e., available time-

frames) at both inlet and outlet of a TDS switch, but no schedule can be

found to properly allocate available resources.

4.2 Time-blocking analysis in FλS systems

In TDS, when a single switch is analyzed, there are two basic blocking

issues: blocking in the space domain (space-blocking); and blocking in the

time domain (time-blocking).
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Intuitively, if there are schedulable time-frames (e.g., free time-frames

that satisfy any chosen forwarding scheme) at a pair of inlet and outlet

but the switch cannot be configured to form a forwarding path through

the switch fabric (i.e., no available resource in the switch fabric), it is

defined as a space-blocking. Space-blocking depends on the architecture of

the switching fabric. Naturally, space-blocking can be completely avoided

by the deployment of strictly non-space-blocking fabrics 1.

On the other hand, even if there is no space-blocking there still can be

blocking in the time domain. For instance, consider the IF scheme when

there are free time-frames at both an inlet and an outlet of a switch, but

the available (free) time-frames have different time index, then those free

time-frames cannot be used for IF and there is time-blocking.

The time-blocking is intrinsic in TDS and can be reduced by using

buffers for flexible scheduling as in the NIF schemes. Intuitively, NIF

offers a greater flexibility in scheduling time-frames at TDS switches, thus

resulting in better performances regarding time-blocking probability. For

example, assume that time-frame 5 within the TC is available at the inlet

and time-frame 7 within the TC is available at the outlet, then with two

buffers (or scheduling delay of two time-frames) it is possible to forward

the IP packets within time-frame 5 to the outlet at time-frame 7.

This chapter focuses on a quantitative time-blocking probability anal-

ysis. The time-blocking probability analysis in this work is a novel com-

binatorial approach. The main assumption is that all possible load com-

binations are equally likely. Namely, if a combination is defined by the

distribution of b busy time-frames (out of K possible time-frames in each

time cycle - TC) in a given inlet and a given outlet, then all such possible

combinations are equally likely.

1The BS-FλS presented in Chapter 3 is one example of strictly non-space-blocking designs.
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4.2.1 Problem formulation

The switch is part of a large network, we assume independence of each

channel (i.e., inlet and outlet), thus we can examine a single channel of the

switch. Since the traffic loading the channel comes from other nodes, the

resources it uses are defined by the other nodes’ constraints, and cannot be

assigned freely by the considered node. Assuming independence between

nodes, we come to the following model for the traffic load.

Figure 4.1: Find the time-blocking probability for general NIF schemes.

Load assumptions — The load is defined as the number of busy time-

frames per TC per channel. For all channels, the busy time-frames within

each TC is assumed to be distributed uniformly. Let b denote the number

of busy time-frames per TC. The load of a channel is identified by the pair

(K, b) and it is further assumed that all possible combinations are equally

likely.

It is further postulated that i) the number b is identical for all inlets

and outlets, and ii) the distribution is independent, i.e., the time-frame

distribution of the inlet is independent from the one of the outlet. The later

assumption is rather restrictive for small switches, but can be reasonable

for large ones. The former assumption is later relaxed without changing

much of the analysis. In fact, in Section 4.6 we present modified results

to capture the more realistic load assumption (where the load of the inlet

and the load of the outlet are different).
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To formulate the problem, we further define some notations:

• a denotes the number of free time-frames per TC, a = K − b;

• tfk denotes a generic time-frame k in a TC;

• tf in
k denotes time-frame k of the inlet, 0 ≤ k < K;

• tf out
k denotes time-frame k of the outlet, 0 ≤ k < K;

• z denotes the number of buffers (or maximum scheduling delay), 0 ≤
z < K;

• symbol ‘0’ presents a busy time-frame;

• symbol ‘1’ presents an available (or free) time-frame.

Note that a time-frame index has periodic attribute. In other words,

if k ≥ K then k = (k mod K) since K time-frames are grouped in a

time-cycle.

Definition 4.2.1 (z-forwarding scheme). — A switch is said to be under

z-forwarding scheme iff a content of a time-frame, upon its arrival, can be

buffered arbitrarily for amount of i time-frames prior to being forwarded,

i = 0, 1, .., z.

In other words, for the z-forwarding scheme the maximum scheduling

delay of an arrival time-frame is equal to z time-frame durations. Note

that z = 0 means the immediate-forwarding (IF) scheme or zero scheduling

delay.

Definition 4.2.2 (A schedulable time-frame). — For a pair of inlet and

outlet, a time-frame k of the outlet (i.e., tf
(ou)
k ) is said to be schedulable

iff tf
(ou)
k =‘1’ and at least one time-frame in the set {tf (in)

k−i |i = 0, 1, .., z.}2

is available.
2Note that due to periodic attribute of a time-cycle, if k − i < 0 then k − i = K − i + k.
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Definition 4.2.3 (A blocked time-frame). — For a pair of inlet and outlet,

A time-frame k of the outlet (i.e., tf
(ou)
k ) is said to be blocked iff tf

(ou)
k =‘1’

and all time-frames in the set {tf (in)
k−i |i = 0, 1, .., z.} are busy. We use a

symbol ‘1b’ to denote the blocked time-frame, i.e., tf
(ou)
k =‘1b’.

Examples of z-schedulable and z-blocked time-frames are in Fig. 4.2.

Figure 4.2: Illustration when K = 12, a = 4, z = 2: tf
(ou)
4 and tf

(ou)
9 are blocked; tf

(ou)
2 ,

tf
(ou)
7 are schedulable.

Problem statement — Given a pair of inlet and outlet of a strictly non

space-blocking switch operating under z-forwarding scheme, we aim at de-

riving the probability pzF, the time-blocking probability that all available

time-frames of the outlet are found blocked (from the inlet), given the load

specified by (K, b).

Let Cblk be the number of combinations made by both the inlet and

the outlet such that all the a available time-frames of the outlet are found

blocked. Let Ctotal be the total number of combinations made by both the

inlet and the outlet. The time-blocking probability is the ratio between

Cblk and Ctotal:

pzF =
Cblk

Ctotal
(4.2.1)

In the following, we present a direct computation of the time-blocking

probability for all z-forwarding schemes by deriving combinatorial numbers

Cblk and Ctotal.
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4.3 Analysis approach

4.3.1 Run, run-length and blocked positions

Run and run-length

The discussion is focused on different dispositions of the a symbols ‘1’ and

the b symbols ‘0’ in the inlet. A run is defined as a group of the same

symbols that are positioned consecutively. For examples, runs of 0’s are

‘0’, ‘00’, ‘000’ and so on.

A number of symbols composing a run is its run-length. The minimum

run-length for a meaningful run is 1. In between two adjacent runs of 0’s

there is one run of 1’s, and vice versa.

Runs in a cyclic arrangement

Because of the periodic nature of TDS/FλS, the last time-frame in a time-

cycle, for example, can be delayed until first time-frame positions in the

next time-cycle if z > 0. It means that the last time-frame and the first

time-frame are positioned consecutively. This implies that the arrangement

of the a symbols ‘1’ and the b symbols ‘0’ into K time-frame positions

reoccur in a cyclical manner. Therefore, in each arrangement the number

of runs of 0’s and the number of runs of 1’s are equal, excluding the trivial

cases of all zeros and all ones.

For instance, in a cyclical arrangement of 4 symbols ‘1’ and 8 symbols

‘0’ in the inlet shown in Fig. 4.2, there are 3 runs of 1’s and 3 runs of 0’s.

One special run of 0’s whose run-length is 2 composing by tf
(ou)
0 =‘0’ and

tf
(ou)
11 =‘0’.
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Runs in a linear arrangement

In this case it is assumed that the cycle is open, and therefore, in the inlet

shown in Fig. 4.2, under the linear arrangement view, there are 4 runs of

0’s and 3 runs of 1’s.

Note that all notations for runs and run-lengths presented in this chap-

ter are defined for cyclical arrangements. However, in some parts of the

combinatorial analysis, it is clearly indicated that the counting is of runs

under the linear arrangement (e.g., in Section 4.4.1). We also note that for

all linear arrangements discussed, the cycle is broken at the first time-frame

position tf0.

Blocked positions

Observe that for a given z-forwarding scheme, an arrangement of the a

available time-frames and the b busy time-frames in the inlet, generates

some positions, such that if an available time-frame in the outlet tf
(ou)
k =‘1’

is “positioned” beneath anyone of these positions, it becomes blocked, i.e.,

tf
(ou)
k =‘1b’. Thus, such positions are called blocked positions. In order

to highlight the concept of blocked position, which is important in the

following analysis, let’s consider the following examples:

• For z = 0 (i.e., the IF scheme), any arrangement in the inlet generates

b blocked positions. Obviously, if an outlet’s available time-frame is

‘positioned beneath’ a busy time-frame of the inlet, it is blocked since

z = 0.

• For z = 1, the content of a time-frame can be delayed at most one

time-frame duration prior to being forwarded. Fig. 4.3 shows how

blocked positions are generated. In fact, for every pair of adjacent ‘00’

symbols the right symbol generates a blocked position. Consequently,

if there are l > 1 consecutive 0’s, then there are l−1 blocked positions.
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Figure 4.3: Illustration of blocked positions when z = 1, given a sample combination of

the inlet.

• For z = 2, a content of time-frame can be delayed at most two time-

frame durations. Fig. 4.4 shows how blocked positions are generated

in this case. Only runs whose run-length is greater than two (since

z = 2), such as, ‘000’, ‘0000’ and so on, generate blocked positions.

Consequently, if there are l consecutive 0’s and l > 2, then there are

l − 2 blocked positions.

Figure 4.4: Illustration of blocked positions when z = 2, given a sample combination of

the inlet.

From above illustrations, it is trivial to conclude that:

• The number of blocked positions generated by a given arrangement

(of available time-frames and busy time-frames) in the inlet depends

on a specific z-forwarding scheme and a given load (K, b) of the inlet.

• For a run of 0’s, there is a relation between the number of blocked

positions generated, its run-length and z. Let li be the run-length of

run i of 0’s. Let xi be the number of blocked positions generated by

run i, then:

xi =

{
li − z ,if li ≥ z

0 ,otherwise
(4.3.1)
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We are interested in run i such that li ≥ z.

The bound of the number of blocked positions

Given an arrangement in the inlet, let x be the total number of blocked

positions generated from all runs of 0’s, the following is shown. Note that

x is non-negative integer, x ⊂ Z+.

Lemma 4.3.1 (The bound of x). For a given load (K, b), x is bounded by:

b− za = xmin ≤ r ≤ xmax = b− z (4.3.2)

Proof. From (4.3.1), we yield xmax = b− z when all the b ‘0’ symbols form

a single run in the inlet, which is obviously the longest possible run.

To compute xmin, we further observe that, in a cyclical arrangement,

a symbols of ‘1’ can split maximum a runs of 0’s, where every run has

the same length of z (i.e., li = z for all i) such that no blocked position

is generated according to (4.3.1). The remaining number of symbols ‘0’

is (b − za). Since no more run of 0’s can be formed due to running out

of symbols ‘1’ to split them. Thus, placements of remaining ‘0’ symbols

finally generate blocked positions. Therefore, xmin = (b− za).

The result (4.3.2) is used to derive the generic form of time-blocking

probability in subsection 4.3.2.

The blocked position concept and the definition of blocked time-frame

(Def. 4.2.3) imply that the time-blocking case happens when all available

time-frames of the outlet are ‘placed in’ blocked positions. Thus, we define

each of these occurrences as a time-blocking case.

4.3.2 The general form of the time-blocking probability

For a given value of x satisfying (4.3.2), let C(x) be the number of ar-

rangements found only in the inlet such that each of these arrangements
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generate exactly x blocked positions. We derive C(x) later in Section 4.4

(for z = 1) and in Section 4.5 (for the general case). In essence, count-

ing C(x) is the most difficult part of our analysis and it is done in the

subsequent two sections. Given C(x), we have the following result:

Theorem 4.3.2. — For a stand-alone switch, the time-blocking probability

for the general z-forwarding scheme, pzF is given by:

pzF =
b−z∑

x=max{a,(b−za)}
C(x)

(
x

a

)/(
K

b

)2

(4.3.3)

Proof. Given x blocked positions generated by the inlet, the number of

ways to arrange all a available time-frames of the outlet into blocked posi-

tions so that a time-blocking occurs is
(
x
a

)
. Thus, the subtotal number of

combinations, denoted as Csub, generated by both the inlet and the outlet

such that a time-blocking happens is given by:

Csub = C(x)

(
x

a

)

Note that if x < a, then
(
x
a

)
= 0. Thus, we only consider x ≥ a (i.e., a

case where a time-blocking occurs). From Lemma 4.3.1, observe that:

• if (b− za) ≥ a ⇔ K ≥ (z + 2)a then for any combination in the inlet,

we have xmin = (b− za) ≥ a.

• if (b−za) < a ⇔ K < (z+2)a then for some x such that b−za ≤ x < a,

we are not interested in. Thus we set xmin = a.

Combined with (4.3.2) we have the range of meaningful x for computing

time-blocking probability:

max{a, (b− za)} ≤ x ≤ b− z. (4.3.4)
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The sum of Csub over all meaningful x yields Cblk:

Cblk =

xmax∑
x=xmin

Csub =
b−z∑

x=max{a,(b−za)}
C(x)

(
x

a

)

Meanwhile, total numbers of combinations at the inlet and at the outlet

are computed as
(
K
b

)
for each inlet and outlet. Thus, we have Ctotal:

Ctotal =

(
K

b

)(
K

b

)
=

(
K

b

)2

Therefore, we obtain pzF as in (4.3.3).

Theorem 4.3.2 shows how pzF is computed once we have C(x). How-

ever, the most nontrivial task is at the derivation of C(x), the number of

combinations in the inlet generating exactly x blocked positions. The com-

putation is more complicated for z-forwarding schemes such that z > 1.

Thus, in the next section, we first derive C(x) for z = 1. The derivation of

C(x) for the general z-forwarding case is presented in Section 4.5.

4.4 Analysis for 1-forwarding case

We separate the analysis of the 1-forwarding scheme from the general case,

because its simpler mathematics allows for descriptions and explanations

that will help in deriving the general case. 1-forwarding means there is a

single position in the buffer: z = 1.

Let u denote the number of runs of 0’s. For z = 1 all runs satisfy li ≥ z.

Summing equation (4.3.1) over all runs yields:

u∑
i=1

xi =
u∑

i=1

(li − z) =
u∑

i=1

li − uz
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Since
u∑

i=1

xi = x (total number of blocked positions) and
u∑

i=1

li = b (total

number of symbols ‘0’), the equation above becomes simply:

u = b− x (4.4.1)

Eq. (4.4.1) holds only for z = 1, and it is the reason why this case can

be treated differently from the general one. In this case the computation of

C(x) can be done in two different ways. The first one, considering a linear

disposition of the symbols, gives the result with a problem decomposition

in form of summation. The second one, which will be used also in the

general case, considers the cyclic disposition of the symbols and gives the

results in form of a multiplicative decomposition that, however, counts

the number of possible patterns u times, so that the final result must be

divided by u.

4.4.1 Additive decomposition

In a non-cyclic perspective, the patterns into which the b symbols ‘0’ and

the a symbols ‘1’ in an inlet can be disposed falls into one of the following

cases:

Case 1: the first and the last symbol of the cycle are different, implying

that there are u runs of 0’s and u runs of 1’s. Case 1 has two obvious and

identical (from the combinatorial point of view) sub-cases: the first symbol

is ‘0’ and the last one is ‘1’, or vice versa.

Case 2: both the first and the last symbol of the cycle are ‘1’. so that

there are u runs of 0’s, and (u + 1) runs of 1’s.

Case 3: both the first and the last symbol of the cycle are ‘0’, so that

there are (u + 1) runs of 0’s and u runs of 1’s.

It is easy to see that the three cases above form a partition of the set

of the dispositions, and this is valid for any given x, so that C(x) can be
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computed as the sum of the three cases.

Lemma 4.4.1 (C(x) for the case z = 1). For z = 1, C(x) is given by:

C(x) =
K

u

(
a− 1

u− 1

)(
b− 1

u− 1

)
(4.4.2)

where x is implicit in u as in (4.4.1).

Proof. We sum all the combinations of the three cases defined above, that,

forming a partition, contain all and only the distributions of interest, i.e.,

C(x) = Ccase 1 + Ccase 2 + Ccase 3

Consider case 1: the number of dispositions is the product of the fol-

lowing terms:

• the number of dispositions of the a symbols ‘1’ into u distinct runs such

that there will be at least one symbol per run. Basic combinatorics

(see Chapter 2 of [68]) yields
(

a−1
u−1

)
.

• the number of dispositions of the b symbols ‘0’ into u distinct runs

such that there will be at least one symbol per run, which is
(

b−1
u−1

)
.

• a multiplicative factor of 2 reporting of the two subcases.

Thus, we obtain Ccase 1:

Ccase 1 = 2

(
a− 1

u− 1

)(
b− 1

u− 1

)

Following the same counting methods we obtain:

Ccase 2 =

(
a− 1

u

)(
b− 1

u− 1

)
=

a− u

u

(
a− 1

u− 1

)(
b− 1

u− 1

)

Ccase 3 =

(
a− 1

u− 1

)(
b− 1

u

)
=

b− u

u

(
a− 1

u− 1

)(
b− 1

u− 1

)

Summing together the three cases leads to equation (4.4.2) with trivial

algebra.
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Substitute (4.4.2) into (4.3.3), replacing u = b−x, z = 1 and a = K−b,

we yield the time-blocking probability for the 1-forwarding scheme, p1F:

p1F =

∑b−1
x=max{a,(b−a)}

K
b−x

(
K−b−1
b−x−1

)(
b−1

b−x−1

)(
x

K−b

)
(
K
b

)2 (4.4.3)

Figure 4.5: Examples of numerical result for z = 0 and z = 1.

Fig. 4.5 shows numerical examples obtained from (4.4.3) for 1-forwarding

scheme and results for 0-forwarding (IF) scheme (reported later in subsec-

tion 4.5.2). In the graph, numerical results for (K = 64, z = 1) and for

(K = 128, z = 0) are very close to each other. However, a quick investiga-

tion on the actual numbers shows that they are not identical, but only very

similar. This can be explained as following. Once one buffer (z = 1) is

used, the effect is as comparable as we double both the number of free and

the number of busy time-frames in a cycle and not use the buffer (z = 0).

Meanwhile, the reverse (i.e., moving from K = 128 to K = 64 and using

z = 1) does not hold.
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4.4.2 Direct factorization

Considering the space (i.e., the cycle) where the time-frames are disposed

in a circle, where the last time-frame is adjacent to the first time-frame,

a direct factorization of the counting problem is possible, counting all the

possible dispositions of the runs of ‘1’ and ‘0’, however this leads to count-

ing all the patterns u times, so that the final result must be divided by u.

Since this is the technique we use in the general case, we do not repeat it

here, but refer to the next section.

4.5 Analysis for general z-forwarding case

Equation (4.4.1) holds only for z = 1, since this is the only case where

all the runs of 0’s whose individual run-length satisfies li ≥ z. If (4.4.1) is

not valid, there is not a unique relationship between x, u and b, and the

scenario becomes more complex.

When the condition li ≥ z is not satisfied by all runs of 0’s, these runs

are divided into two subsets: those that leads to blocking positions and

those that do not. Let’s introduce the following notations, that will be

used in deriving the results later in the section:

• U denotes the set of all runs i (of 0’s) such that run-lengths satisfy

li ≥ z. Only runs with li > z produces xi ≥ 1, i.e., blocking positions.

• u = ‖U‖.

• bu denotes the number of symbols ‘0’ covered by all runs in U.

• V denotes the set of all runs i (of 0’s) such that run-length li < z.

That is, no run in V produces blocked positions.

• v = ‖V‖.
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• bv denotes the number of symbols ‘0’ covered by all runs in V.

• A denotes the set of all runs of 1’s. Thus, u + v = ‖A‖ because of

cyclical arrangement.

From the above definitions it is immediately clear that the 1-forwarding

case is the special case where V = ∅. Table 4.1 summarizes the notation

introduced above, together with the others already used elsewhere in this

chapter.

One of the key differences between the 1-forwarding case and the general

case analyzed is the presence of non-valid (u, v) couples, i.e., values of u

and v that do not satisfy all the constraints of the problem. This fact

forces us to separately count for all and any the valid (u, v) couples, while

the simple relation (4.4.1) allowed for a unique computation. Given this

additional complexity, partitioning the set of patterns as we did for z = 1

becomes excessively cumbersome, so we resort to the analysis considering

the cyclic disposition of time-frames.

We now define some general bounds for the parameters of the problem,

that will be the upper and lower limits of the indexes used in the formulae

derived afterwards. Summing eq. (4.3.1) over all runs in U yields (with

some simple algebra manipulations):

0 < bu = x + zu ≤ b (4.5.1)

The number of symbols bv is given by:

bv = b− bu = b− x− zu ≥ 0 (4.5.2)

While by construction, we have:

1 ≤ u + v ≤ a (4.5.3)
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Table 4.1: Summary of the notation used for the general case.

Notation Explanation

a Number of symbols ‘1’ (i.e. number of free time-frames)

b Number of symbols ‘0’ (i.e. number of busy time-frames)

z Number of buffers, 1 ≤ z < K

pzF Blocking probability under z-forwarding scheme

li Run-length of run i

xi Number of blocked positions generated by run i

x Total number of blocked positions generated by

all runs of 0’s in a given arrangement

U Set of all runs of 0’s such that li ≥ z

u Number of runs in U, u = ‖U‖

bu Total number of symbols ‘0’ occupied by all runs in U

V Set of all runs of 0’s such that 1 ≤ li < z

v Number of runs in V, v = ‖V‖

bv Total number of symbols ‘0’ occupied by all runs in V

A Set of all runs of 1’s, u + v = ‖A‖

C(u, v) Number of combinations that generate exact r

blocked positions, given a valid pair of (u, v)

C(x) Total number of combinations in the outlet that generates

exact r blocked positions, for all valid pairs of (u, v)

Lemma 4.5.1. The size of U is bounded by:

1 = umin ≤ u ≤ umax = min
{⌊b− x

z

⌋
, a

}
(4.5.4)
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Proof. When there is only one run of 0’s, we have umin = 1.

From (4.5.1) we have u = bu−x
z and u = umax iff bu = b. bu = b implies

that all symbols ‘0’ of the inlet are in runs belonging to U and V=∅, v = 0.

Setting v = 0 in (4.5.3) yields u ≤ a so that umax ≤ min{bb−x
z c, a}.

Note that u = 0 is not considered since it means there is one run of

0’s with length smaller than z, or b < z. In this case we do not have

time-blocking.

Lemma 4.5.2. For 1 < z < K, the size of V is bounded by:

⌈ bv

z − 1

⌉
= vmin ≤ v ≤ vmax = min{(a− u), bv} (4.5.5)

Proof. We have v = vmin = d bv

z−1e when all runs in V have the maximum

allowed length li = (z − 1).

The upper bound depends on the ratio between bv and the number of

symbols ‘1’ not used to separate runs in U that can separate runs in V.

That is (a− u).

• if bv > (a− u) then vmax = (a− u).

• if bv ≤ (a − u), we can split all bv symbols ‘0’ in runs of length one,

so that vmax = bv.

Therefore, vmax = min{(a− u), bv}.

4.5.1 Deriving the combinatorial number C(x)

Equations (4.5.1)-(4.5.5) define the limits of (u, v) for a given value of

blocking positions x satisfying (4.3.4).

Recall that in a time-cycle, the last time-frame tfK−1 is considered to be

adjacent to (on the left) the first time-frame tf0, so that no real “beginning”

or “ending” of the cycle exist and no run is “split” as it happens considering

the linear disposition with the cycle’s beginning and ending.
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Theorem 4.5.3. Given a valid pair of (u, v), the number of patterns, de-

noted as C(u, v), that exactly generates x blocked positions is:

C(u, v) =
KCuvCaCbu

Cbv

u + v
(4.5.6)

where r is implicit in bu, bv, u, v given the relations (4.5.1)-(4.5.5). The

factors Cuv, Ca, Cbu
, and Cbv

are defined in (4.5.7)-(4.5.10) of the proof,

respectively.

Proof. The goal is computing the total number of possible patterns dis-

tributing the bu symbols ‘0’ into U runs, the bv symbols ‘0’ into V runs,

and the a symbols ‘1’ into runs in A. To obtain this we show that there

exists a factorization of the problem that counts (u + v) times the total

number of patterns. The factorization starts counting the possible disposi-

tions of the runs themselves given u and v, then counts the dispositions of

the symbols in the runs in different sets A, U, and V, finally all possible K

cyclic shifts of the above patterns are counted showing that each pattern

is thus counted exactly (u + v) times.

Cuv: number of dispositions of the u runs in U within the total number

of possible runs (u + v) of U∪V. Trivial combinatorics yields:

Cuv =

(
u + v

u

)
(4.5.7)

Ca: number of dispositions of the a symbols ‘1’ into the (u + v) distinct

runs such that each run has at least one symbol. Basic combinatorics [68]

yields:

Ca =

(
a− 1

u + v − 1

)
(4.5.8)

Cu: number of dispositions of the bu symbols ‘0’ into the u distinct runs

such that each run has at least z symbols. The counting method consists
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in first placing (z − 1) symbols into every run ∈ U, then distributing the

remaining bu − (z − 1)u symbols in all the u runs such that each run has

at least one symbol. Using the same combinatoric result used for Ca we

have:

Cbu
=

(
bu − (z − 1)u− 1

u− 1

)
(4.5.9)

Cbv
: number of dispositions of the bv symbols ‘0’ into the v distinct

runs such that each run has at least one symbol and no run has more than

(z − 1) symbols:

Cbv
=

{ ∑v
i=0 (−1)i

(
v
i

)(
bv−i(z−1)−1

v−1

)
if v > 0

1 v = 0 or bv = v
(4.5.10)

Deriving (4.5.10) is a long and cumbersome and we present it in Ap-

pendix A.

The time-cycle boundary can be at any time-frame, thus there are K

possible shifts for each disposition counted so far. The total number of

possible dispositions given a valid pair (u, v) is then KCuvCaCbu
Cbv

. How-

ever, each combination is actually counted (u + v) times and the number

KCuvCaCbu
Cbv

must be divided by (u+ v) to eliminate multiple countings,

thus resulting in (4.5.6).

The proof of the multiple counting is presented in Appendix B to stream-

line reading. The rationale is that each of the CuvCaCbu
Cbv

can be trans-

formed into exactly u + v other patterns by shifting it circularly of an

appropriate number of time-frames.

Theorem 4.5.4. The total number of dispositions C(x) that generates ex-

act x blocked positions is given by:

C(x) =

min{b b−x
z c,a}∑

u=1

{min{a−u,bv}∑

v=d bv
z−1e

C(u, v)
∣∣
u+v≤a

}
(4.5.11)
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Proof. A pair of (u, v) is valid iff u and v jointly satisfy (4.5.3), (4.5.4) and

(4.5.5). Since C(u, v) is computed through eq. (4.5.6) for any valid pair

of (u, v), the sum of C(u, v) over all valid pairs of (u, v) leads to the total

number of dispositions C(x) in the outlet that generates exact x blocked

positions.

Finally, summing (4.5.11) over all valid values of x then multiplying with(
x
a

)
fulfills the numerator of (4.3.3) and finally the closed form solution of

the time-blocking probability for a single node case.

Figure 4.6: Examples of numerical result for z > 1.

Examples of numerical results for various z and K values are shown in

Fig. 4.6. One interesting property is the reduction in time-blocking prob-

ability as K increases for a given normalized load. While it was an easy

prediction that time-blocking probability would decrease exponentially in-

creasing the buffering capability z, a similar decrease simply increasing K

was not an easy prediction. The phenomenon is similar to the classic result

that gives smaller and smaller call blocking probability for a given load as
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the granularity of the calls decreases.

4.5.2 Sanity checks

The result for the general case presented above is rather complex and might

be appalling. Here we discuss some limit cases where the exact result can

be easily obtained with heuristic reasoning.

Immediate forwarding

This is the case when b ≤ K−1, z = 0. For any combination in the outlet,

we always have x = xmin = xmax = b, and C(x) =
(
K
b

)
. Thus, the equation

(4.3.3) shrinks to:

p0F =

(
K

b

)(
b

a

)/(
K

b

)2

=

(
b

a

)/(
K

b

)
(4.5.12)

Trivial combinatorics also reache the same result.

Non-immediate forwarding with z = 1

This is the case when b ≤ K−1, z = 1. For z = 1, we have V=∅ or bv = 0,

and bu = b = x + u. Letting v = 0 in the formulae of theorem 4.5.3 yields

C(u,v=0) =
K

u

(
a− 1

u− 1

)(
bu − (z − 1)u− 1

u− 1

)
(4.5.13)

which, as claimed in Section 4.4.2, is equivalent to (4.4.2) remembering

that z = 1 ⇔ b = bu; v = 0; x = b− u.

Arbitrary (full) time-frame forwarding

This is the case when b ≤ K − 1, z = K − 1. Replacing z = K − 1 into

(4.3.2) yields xmax = b− z = b− (K−1) ≤ 0 since b ≤ K−1. This implies

that there is no single combination where we can find x ≥ a, or pzF= 0 for

z = K−1. The intuition of zero blocking for this special case is confirmed.
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4.6 Load assumption relaxation

The results presented in previous sections can be modified to accommodate

the different load assumptions where the load of the inlet and the outlet

are different. Let (K, bi) and (K, bo) denote the load for the inlet and for

the outlet respectively. And let ai and ao be the number of available time-

frames at the inlet and the outlet, respectively. Thus, eq.(4.3.4) becomes:

max{ai, (bi − zai)} ≤ x ≤ bi − z. (4.6.1)

and the modified version of (4.3.3) is:

pzF =

{ bi−z∑

x=max{ai,bi−zai}
C(x)

(
x

ao

)}/{(
K

bo

)(
K

bi

)}
(4.6.2)

Note that C(x) is given by:

C(x) =

min{b bi−x

z c,ai}∑
u=1

{min{ai−u,bv}∑

v=d bv
z−1e

C(u, v)
∣∣
u+v≤ai

}
(4.6.3)

where

bv = bi − bu = bi − x− zu ≥ 0 (4.6.4)

Eq. (4.5.1), (4.5.7), (4.5.8), (4.5.9), (4.5.10) and (4.5.6) are reused with-

out any change.

4.7 Discussions

The problem of time-blocking probability in TDS switches has been formu-

lated and analyzed in this chapter. It has been shown that time-blocking is

greatly reduced when a small number of (optical) buffers (used for enabling

scheduling delays that are measured in time-frames) are added to each inlet.
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Consequently, the main result of this chapter is the time-blocking proba-

bility analysis as a function of the number of possible scheduling delay z

and the loads (K, bi) and (K, bo).

The time-blocking probability analysis in this chapter is a novel com-

binatorial approach. The main assumption is that all possible load com-

binations are equally likely. Namely, if a combination is defined by the

distribution on b busy time-frames, out of K possible time-frames in each

time-cycle, in a given inlet and a given outlet, then all such possible combi-

nations are equally likely. Some concrete numerical examples presented in

the chapter clearly illustrate that only a small number of buffers (or short

scheduling delay) is required to obtain low blocking probability under high

load conditions.

However, the analysis presented in this chapter is suitable to compre-

hend time-blocking behaviors only for a single strictly non space-blocking

switch. Thus, in the next chapter, we extend the blocking analysis for

multiple hops with both immediate forwarding (IF) and non-immediate

forwarding (NIF).

67





Chapter 5

Time-blocking: multi hop cases

In chapter 4, we analyze the time-blocking behavior of a stand-alone strictly

non-space blocking FλS switch. In fact, when one single switch is consid-

ered, it is equivalent to a route path of 2 hops (i.e., source→ one-switching-

node → destination).

Obviously, more than two-hop cases come into reality more often. In this

chapter, we aim at analyzing the time-blocking probability when multiple

consecutive switches are connected to form a multiple-hop path on which

a FλP can be established. More specifically, the time-blocking along the

route consisting of H hops will be analyzed. The load assumption remains

as presented in the previous chapter, i.e., all combinations are equally

likely given b (the number of busy time-frames at hop h) out of total K

time-frames of a time-cycle.

5.1 Multi-hop scenarios

A path from a source to a destination node is connected by H − 1 consec-

utive switches. Switches are similar in terms of being strictly non space

blocking and having the same z-forwarding scheme. Hops and switches are

indexed as shown in Fig. 5.1.

Without the loss of generality, a delay between hops is disregarded (i.e,
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Figure 5.1: H hops from source (src) node to destination (des) node, H − 1 switches in

between. There are K time-frames per hop and b out of K are busy.

the time-cycle of every hop is aligned to each other). Recall that symbol

‘1’ represents an available time-frame, and symbol ‘0’ represents a busy

time-frame. For every hop, there are b symbols ‘0’ and a symbols ‘1’. All

symbols are uniformly distributed.

We aim at finding the probability that after H hops there is no schedule

to form a FλP from source to destination. Recall that a schedule is defined

as a possible allocation of time-frames following z-forwarding schemes at

all switching nodes along a route of H hops so that a FλP1 can be setup.

5.1.1 Definitions and notations

Throughout the paper, for any positive integer z, let [z] denote the set of

integers {0, 1, 2, · · · , z}. Let tf
(h)
k denote time-frame k at hop h, we have

following definitions, which are the extensions of Def. 4.2.2 and Def. 4.2.3.

1Note that we consider a FλP that requires only one time-frame at a time.
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Definition 5.1.1 (A schedulable time-frame at hop h). — A time-frame k

at hop h, tf
(h)
k is said to be schedulable iff tf

(h)
k =‘1’ (i.e., available) and at

least one time-frame in the set {tf (h−1)
k−i |i ∈ [z]} is available (i.e., tf

(h−1)
k−i =‘1’

for at least one i ∈[z]).

Note that for the fist hop, h = 0, all available time-frames are schedu-

lable.

Definition 5.1.2 (A blocked time-frame at hop h). — A time-frame k at

hop h, tf
(h)
k is said to be blocked, tf

(h)
k =‘1b’, iff tf

(h)
k =‘1’ and all time-frames

in the set {tf (h−1)
k−i |i ∈ [z]} are either blocked or busy (i.e., tf

(h−1)
k−i =‘1b’ or

tf
(h−1)
k−i =‘0’ for all i ∈[z]).

Figure 5.2: Illustration of blocked time-frames ‘1b’.

Blocked time-frames are useless in the process of searching for a schedule

for setting up a FλP. An illustration of a blocked time-frame (Def. 5.1.2)

is shown in Fig. 5.2. Note that the Def. 5.1.2 is repetitively applied for

all available time-frames of all hops excluding the first hop. There is no

blocked time-frames at the first hop since any available time-frame can

start a schedule to form an FλP. In other words, tf
(0)
k =‘1b’ does not exist.

Definition 5.1.3. — A time-frame position in a time-cycle at hop h is said

to be unblocked iff it is in a forwarding range of one schedulable time-frame

of the previous hop h− 1.
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Figure 5.3: The unblocked positions.

In other words, if tf
(h−1)
k =‘1’, then all time-frame positions tf

(h)
k+i, i ∈[z],

are unblocked. If an available time-frame ‘1’ is placed in an unblocked

position, it becomes a schedulable time-frame.

Contrary, there are also blocked positions. By Def. 5.1.2, if tf
(h−1)
k−i =‘0’

or tf
(h−1)
k−i = ‘1b’ for all i ∈[z], then tf

(h)
k is a blocked position. If an time-

frame ‘1’ is placed in a blocked position, it becomes blocked, ‘1b’.

Remark 5.1.1. At hop h, let x be the number of blocked positions,and y be

the number of unblocked positions, then it is obvious that:

x + y = K (5.1.1)

At hop h− 1 and hop h, let:

• αh−1 denotes the number of schedulable time-frames ‘1’ at hop h− 1.

• βh−1 denotes the number of unblocked positions generated by hop h−1

for hop h.

• αh denotes the number schedulable time-frames ‘1’ at hop h.

• Pr(αh = ã) denotes the probability that αh = ã.

• Pr(αh−1 = â) denotes the probability that αh−1 = â.

Remark 5.1.2. For the first hop h = 0, we have:

Pr(α0 = ã) =

{
1.0 , if ã = a0

0.0 , otherwise
(5.1.2)
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Remark 5.1.3. In general at hop h− 1, â is bounded by:

0 ≤ â ≤ a (5.1.3)

Remark 5.1.2 and Remark 5.1.3 are trivial by constructions.

Note that if αh−1=0, then βh−1=0. For αh−1=â> 0, on one extreme

case, when all â schedulable time-frames at hop h− 1 form a unique run,

then we obtain minimum value of unblocked positions:

ymin = min{â + z, K}.

On the other extreme case, when each schedulable time-frame forms one

run, and two consecutive schedulable time-frames are split by an interval

of at least z time-frames, then we obtain the maximum value of unblocked

positions:

ymax = min{(z + 1)â, K}.

Thus, we have the following remark.

Remark 5.1.4. At hop h − 1, given αh−1 = â > 0 then y (the number of

unblocked positions generated) is bounded by:

min{â + z, K} ≤ y ≤ min{(z + 1)â, K} (5.1.4)

5.1.2 Example

An example of multi-hop time-blocking is shown in Fig. 5.4. In the exam-

ple, H = 4 and each switching node use 2-forwarding scheme. Each hop

contains one channel where K = 12 time-frames. In the example, until the

third hop, there are two schedulable time-frames. However, all available

time-frames of the fourth hop are blocked.
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Figure 5.4: An example shows that there is blocking after 4 hops.

5.2 Stochastic ordering background

We present in this section some basic results of stochastic ordering. These

results are important to prove the bounds of time-blocking probability that

we shall derive in this chapter.

Definition 5.2.1. — Let Y and Ÿ be random variables taking values

on the same finite ordered space E = {0, 1, 2, · · · , K} with B and B̈ as

associated probability distribution vectors:

B
.
=

〈
Pr(Y = j)

〉

B̈
.
=

〈
Pr(Ÿ = j)

〉
.

Then Y 6st Ÿ (i.e., Y is less than Ÿ in a stochastic sense) iff

K∑
j=y

Pr(Y = j) ≤
K∑

j=y

Pr(Ÿ = j) (5.2.1)
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for all y = 0, 1, 2, · · · , K. Equivalently, we can write:

B 6st B̈ (5.2.2)

For example, we can have two following probability distribution vectors

satisfying the above stochastic ordering: B =
〈
0, 0.22, 0.33, 0.45, 0

〉
and

B̈ =
〈
0, 0.20, 0.34, 0.46, 0

〉
.

Definition 5.2.2. — Let P and P̈ be two stochastic matrices. And let

Py,∗ and P̈y,∗ denote row y of P and P̈ , respectively. If

Py,∗ 6st P̈y,∗

for all y, then

P 6st P̈ (5.2.3)

Theorem 5.2.1. If there are two probability distribution vectors of size K

satisfying:

B0 6st B̈0

and the two matrices P and P̈, whose sizes are K ×K, satisfying (5.2.3),

then:

Bh = B0 Ph 6st B̈h = B̈0 P̈h (5.2.4)

for any integer h ≥ 1.

Fundamental concepts and details can be found in [13] and [46]. Stochas-

tic ordering is a strong mathematic tool that is usually used to prove and

derive bounds.

5.3 Exact Solution for Zero Scheduling Delay

5.3.1 Single channel per hop

When the scheduling delay is zero (i.e., z = 0), it is the IF scheme. For

this special case, we have the following result.
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Lemma 5.3.1. For z = 0, the probability that there are ã schedulable

time-frames at hop h is given by:

Pr(αh = ã) =
a∑

â=0

(
â
ã

)(
K−â
a−ã

)
(
K
a

) Pr(αh−1 = â) (5.3.1)

Proof. Let Pr(αh = ã|αh−1 = â) represent the conditional probability that

there are ã schedulable time-frames at hop h, given â schedulable time-

frames at hop h− 1.

An available time-frame of hop h becomes a schedulable time-frame if

it is positioned “below” a schedulable time-frame of hop h− 1. In order to

generate exactly ã schedulable time-frames for hop h (ã < â), we distribute

ã available time-frames “beneath” the total â possible positions, obtaining

the number
(
â
ã

)
.

Remaining a− ã available time-frames must be placed under the (K− â)

busy time-frames of hop h − 1 so that no more schedulable time-frame is

generated, yielding the number
(
K−â
a−ã

)
.

Meanwhile, without any constraint, the total number of ways to dis-

tribute a available time-frames into K time-frame positions is
(
K
a

)
. Thus,

we obtain:

Pr(αh = ã|αh−1 = â) =

(
â
ã

)(
K−â
a−ã

)
(
K
a

) (5.3.2)

Taking

Pr(αh = ã) =
∑

all possible â

Pr(αh = ã|αh−1 = â) Pr(αh−1 = â)

remembering (5.1.3) results in (5.3.1).

With the initial condition of Pr(α0 = ã) given in (5.1.2), eq. (5.3.1) is

used repetitively to obtain the time-blocking probability for the IF scheme.
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5.3.2 Multi-channel per hop

In FλS network, a link between two consecutive switches (a hop) usually

has at least a fiber of C channels. Assume that we have a perfect load

balancing between channels so that the load carried by each channel are

equal. Assume further that no wavelength conversion is used. This is

equivalent to the case that we have C independent paths (between source

and destination) whose individual blocking probability is p0 = Pr(αH−1 =

0). Thus, the C channels time-blocking probability, p(C), is given by:

p(C) =
{
p0

}C
(5.3.3)

Figure 5.5: Numerical results for 5 hops, K = 128, z = 0, C varies.

Numerical results (Fig 5.5 - Fig. 5.8) show that even under zero schedul-

ing delay scheme, having multiple channels per link helps reduce blocking

probability significantly. Fig. 5.7 and Fig. 5.8 show how blocking prob-

ability is heavily affected by hop-length. For example, at 75% time-cycle

loaded (Fig. 5.8), the blocking probability increases more than 100 times

when hop is increased from 5 to 6, even if we have 64 channels.
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Figure 5.6: Numerical results for 7 hops, K = 128, z = 0, C varies.

Figure 5.7: Numerical results when normalized load is 50%, hop-length varies.
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Figure 5.8: Numerical results when normalized load is 75%, hop-length varies.

5.4 Exact Solution for Nonzero Scheduling Delay

The analysis for zero scheduling delay is rather straightforward. The idea

is that we can derive the quantity Pr(αh = ã) using a hop-based compu-

tation. In this section, we apply this approach to analyze cases of nonzero

scheduling delay schemes (i.e., z ≥ 1).

Let us introduce two following conditional probabilities:

• Pr(βh−1 = y|αh−1 = â) denotes the probability that βh−1=y, given

that αh−1=â.

• Pr(αh = ã|βh−1 = y) denotes the probability that αh=ã, given that

βh−1=y.

Basically, the following result holds for general cases.

Theorem 5.4.1. Following coupled equations can be repetitively used to
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compute Pr(αh = ã) for any hop h ≥ 1:

Pr(βh−1 = y) =
a∑

â=0

Pr(βh−1 = y|αh−1 = â) Pr(αh−1 = â) (5.4.1)

Pr(αh = ã) =

ymax∑
y=0

Pr(αh = ã|βh−1 = y) Pr(βh−1 = y) (5.4.2)

where ymax = min{(z + 1)a,K}.

Proof. The theorem is obvious according to probability theory and running

parameters given in (5.1.3)-(5.1.4).

According to Theorem 5.4.1, we can obtain the time-blocking probabil-

ity if we are able to compute two conditional probabilities Pr(αh = ã|βh−1 = y)

and Pr(βh−1 = y|αh−1 = â). More specifically, the time-blocking probabil-

ity after H hops is computed by eq. (5.4.2) for αH−1 = 0.

Lemma 5.4.2. Pr(αh = ã|βh−1 = y) is computed by:

Pr(αh = ã|βh−1 = y) =



(y
ã)(

K−y
a−ã)

(K
a)

,if ã ≤ y & a− ã ≤ K − y

0 ,otherwise
(5.4.3)

Proof. In order to have ã schedulable time-frames at hop h, we distribute ã

available time-frames among y unblocked positions generated by hop h−1,

which yields
(
y
ã

)
. To block the other (a − ã) available time-frames, they

must be arranged among (K − y) blocked positions, which yields
(
K−y
a−ã

)
.

Meanwhile, without any constraint, the total number of dispositions is
(
K
a

)
.

Thus, we derive Pr(αh = ã|βh−1 = y) as in (5.4.3).

Though Pr(αh = ã|βh−1 = y) is easily computed as in Lemma 5.4.2, it

is more challenging to find Pr(βh−1 = y|αh−1 = â).
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In fact, we observe the inclination that schedulable time-frames tend

to form “batches” rather than being uniformly distributed among K posi-

tions. The exact computation of Pr(βh−1 = y|αh−1 = â) depends not only

on a certain z-forwarding scheme but also on the detail distribution of â

schedulable time-frames, which is no longer uniform due to the allowance

of nonzero scheduling delay.

Therefore, an exact solution for time-blocking probability is possible if

we are able to compute probabilities associated with all possible distribu-

tion of â schedulable time-frames. We demonstrate the process to obtain

the exact time-blocking probability by examining one simple example.

5.4.1 An example for small K

We perform the exact solution for a set of small parameters: K = 6, a =

2, z = 1. Following (5.1.3) and (5.1.4) we have 0 ≤ â ≤ 2 and y ∈
{0, 2, 3, 4}.

Table 5.1: All possible patterns and y values for K = 6, a = 2, z = 1.

State â Pattern y

q0 0 000000 0

q2 1 100000 2

q3 2 110000 3

q41 2 101000 4

q42 2 100100 4

For each possible â, we consider all possible patterns taking into account

the ordering of run-lengths of 0’s and of 1’s. For example, by allowing

shifting the two following patterns are interchangeable: 101000 ≡ 100010.

All patterns and their corresponding â and y are given in Table 5.1. The

number of patterns is small. Transition probabilities between patterns can
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be easily computed as shown in Table 5.2.

Table 5.2: Transition probability between patterns.

q0 q2 q3 q41 q42

q0 1 0 0 0 0

q2 6/15 8/15 1/15 0 0

q3 3/15 9/15 2/15 1/15 0

q41 1/15 8/15 3/15 2/15 1/15

q42 1/15 8/15 2/15 2/15 2/15

Let qh be the vector associated with the probability that hop h is at the

state q∗: qh
.
= 〈Pr(q∗)〉. Let Q be the transition matrix given in Table 5.2.

We have q0
.
= 〈0, 0, 3

15 ,
6
15 ,

6
15〉.

And the vector qh is computed by:

qh = q0 ×Qh

The above equation is used to compute qH−2 then (5.4.2) is applied to

compute the blocking probability.

5.4.2 Magnitude of complexity

In principle, the exact solution requires two steps:

• Step 1: acquire knowledge of all combination patterns.

• Step 2: compute a transition probability for every pair of patterns.

Let Π(b, n) be the number of partitions of the integer b into n parts.

Let NS be the number of patterns at a load point (K, b). The number of

patterns is given by:

NS =
K−b∑
n=1

Π(b, n)
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In fact, Π(b, n) is the number of ways to distribute b identical balls into

n identical bins (i.e., bins are not ordered) with no constraint. Note that

1 ≤ n ≤ a.

For example,
∑64

n=1 Π(64, n) = 1, 741, 360. Thus, an exact blocking

probability at the point of 50% load of a time-cycle K = 128 requires a

knowledge of 1, 741, 360 patterns and the computation of transition proba-

bility between any pair of patterns, which requires a matrix of 1, 741, 3602

cells. This computation is impractical.

5.5 A Lower Bound for Nonzero Scheduling Delay

As we discuss in the last section, the exact quantity of Pr(βh−1 = y|αh−1 = â)

can not be exactly computed if we consider the uniform distribution of â

schedulable time-frames. However, we can obtain the lower bound of block-

ing probability based on this uniform distribution assumption.

Now, at hop h− 1, given αh−1=â let:

• C(y) be the number of combinations that generate exactly y unblocked

positions;

• CT be the total number of combinations.

Note that each combination is the disposition of three types of time-

frames(ã schedulable, a− ã blocked, and b busy) into K cyclic positions of

a time-cycle. We have the following lemma.

Lemma 5.5.1. Pr(βh−1 = y|αh−1 = â) is given by:

Pr(βh−1 = y|αh−1 = â) =



C(y)
CT

,if (5.1.3) & (5.1.4) & â > 0

1 ,if y = â = 0

0 ,otherwise

(5.5.1)
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Proof. It is obvious that if â=0, then y=0, thus Pr(βh−1 = 0|αh−1 = 0) = 1.

Following Remarks 5.1.3 and 5.1.4, it is clear that if â and y do not

respectively satisfy (5.1.3) and (5.1.4), then Pr(βh−1 = y|αh−1 = â) =

0. Otherwise, assume C(y) and CT are countable (we shall discuss the

derivation of C(yh−1) and CT later), we have the combinatorial probability

as the first entry of (5.5.1).

5.5.1 Combinatorial numbers C(y) and CT

Essentially, we must consider all possible dispositions of three types of

time-frames (schedulable, blocked, and busy) into K cyclic positions of

a time-cycle under some certain constraints. Before pointing out some

challenges that prevent us to derive correct versions of C(y) and CT , we

introduce approximated versions of these two numbers.

One can see that a blocked time-frame ‘1b’ plays no role in the process

of generating unblocked positions at hop h− 1. Based on this observation,

we can derive an approximation by treating blocked time-frames ‘1b’ and

busy time-frames ‘0’ equally. In other words, we approximate the number

C(y) by considering how to dispose:

• â schedulable time-frames

• and b̂=K−â “busy” time-frames

into K time-frame positions so that each combination generate exactly y

unblocked positions.

Approximating the number CT

Accordingly, the number CT can be approximated by:

CT ≈
(

K

â

)
(5.5.2)
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Approximating the number C(y)

In order to approximate the number C(y), recall C(x) - the number of dis-

positions that each generate exactly x blocked positions (defined in Section

4.5 - Chapter 4).

From Remark 5.1.1, it is trivial to see that if x + y = K, the two

combinatorial are equal:

C(y) = C(x)

Therefore, instead of approximating C(y), it is equivalent to approxi-

mate C(x), by which we can reuse fundamental results presented in Section

4.5 - Chapter 4.

Since x = K − y, following (5.1.4) we modify the bound of x:

max{0, b̂− zâ} ≤ x ≤ max{0, b̂− z} (5.5.3)

Applying the same combinatorial analysis that we used in Section 4.5 -

Chapter 4, we obtain:

0 ≤ b̂u = x + zu ≤ b̂ (5.5.4)

Note that b̂u = 0 when u = 0, x = 0 or y = K.

The number of symbols b̂v is given by:

0 ≤ b̂v = b̂− b̂u = b̂− x + zu (5.5.5)

We have:

1 ≤ u + v ≤ â (5.5.6)

Also, u is bounded by:

0 ≤ u ≤ min{â, b b̂− x

z
c} (5.5.7)

For 1 < z ≤ K − 1, v is bounded by:

d b̂v

z − 1
e ≤ v ≤ min{â− u, b̂v} (5.5.8)
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For a pair of valid (u, v) satisfies (5.5.6), (5.5.7) and (5.5.8), we have:

C(u, v) =
KCuvCâCb̂u

Cb̂v

u + v
(5.5.9)

where:

Cuv =

(
u + v

u

)
(5.5.10)

and

Câ =

(
â− 1

u + v − 1

)
(5.5.11)

and

Cb̂u
=

(
b̂u − (z − 1)u− 1

u− 1

)
(5.5.12)

and

Cb̂v
=

{ ∑v
i=0 (−1)i

(
v
i

)(
b̂v−i(z−1)−1

v−1

)
,if v > 0

1 ,b̂v = v
(5.5.13)

Thus, C(x) is given by:

C(x) =

min{â,b b̂−x
z c}∑

u=0

{ d b̂v
z−1e∑

min{â−u,b̂v}
C(u,v)

∣∣
u+v≤â

}
(5.5.14)

Finally, replacing x = K − y, K − b̂ = â, we obtain:

C(y) ≈
min{â,by−â

z c}∑
u=0

{ d b̂v
z−1e∑

min{â−u,b̂v}
C(u,v)

∣∣
u+v≤â

}
(5.5.15)

Note that for z = 1, we have a simplified version:

C(u) =
K

u

(
â− 1

u− 1

)(
b̂− 1

u− 1

)
(5.5.16)

and thus:

C(y) ≈
min{â,y−â}∑

u=0

K

u

(
â− 1

u− 1

)(
b̂− 1

u− 1

)
for z = 1 (5.5.17)
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5.5.2 Observation and remarks

An approximate time-blocking probability can be obtained according to

Theorem 5.4.1, Lemma 5.4.2, Lemma 5.5.1 once the numbers C(y) and CT

are computed.

A further observation suggests that the more accurate approximation

can be achieved. The fact is that by treating ‘1b’ and ‘0’ equally, we

implicitly count some forbidden combination patterns while deriving C(y)

and CT .

Specifically, let 1b{i}1b represent a pattern when a series of i consecutive

schedulable time-frames (i.e, symbols ‘1’) are “positioned” in between two

consecutive blocked time-frames (i.e., symbols ‘1b’). For nonzero scheduling

delays (i.e., z ≥ 1), a pattern 1b{i}1b such that i ≤ z is not allowed to

appear. We call these patterns by forbidden patterns.

Figure 5.9: For z = 1: there is one forbidden pattern.

The case of forbidden patterns is illustrated in Fig. 5.9 and Fig. 5.10.

In Fig. 5.9 assume that at hop h, a disposition of all time-frames contain

a forbidden pattern (time-frame positions in grey), then no time-frame

among three types of time-frame (schedulable ‘1’, blocked ‘1b’, and busy

‘0’) can be put in a “question mark” position at hop h − 1 so that the

1-forwarding scheme satisfies.

Figure 5.10: For z = 2, there are two forbidden patterns.
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The number of possible forbidden patterns increases as a possible schedul-

ing delay z is increased. As in Fig. 5.10 where z = 2, there are two possible

forbidden patterns compared to only one forbidden pattern when z = 1 (in

Fig. 5.9). This fact implies that, using approximate results given in (5.5.2)

and (5.5.15), we obtain less accurate results if more scheduling delay is al-

lowed (i.e., large z). This remark will be examined later in Section 5.7.

Obviously, a more precise approximation can be obtained if we distin-

guish ‘1b’ and ‘0’ in the counting process. In other words, we consider the

distribution of three types of time-frames (‘1’, ‘1b’, and ‘0’) and eliminate

all forbidden patterns while counting C(y) and CT . Remember that the

placements of time-frames into a time-cycle has the cyclic property. The

more accurate approximation can be accomplished using Polya counting

and the Inclusion-Exclusion principle [68]. However, we believe that it has

a high complexity and it deserves a further consideration in the future.

Another remark is that the accuracy of approximation based on (5.5.2)

and (5.5.15) degrades as the hop-length increases. Since errors appear in

the conditional probability Pr(βh−1 = y|αh−1 = â), which later transfers

the errors to computations of probability for the next hop. Thus, the errors

are aggrandized as hop-length increases. This remark is also examined in

Section 5.7.

5.5.3 Why lower bound?

The further scrutiny shows that even if all forbidden combination patterns

are eliminated while deriving C(y) and CT , we still obtain a lower bound

of time-blocking.

Let Bh be the vector associated with Pr(βh−1 = y) for all possible y:

Bh
.
= 〈Pr(βh−1 = y)〉, where Pr(βh−1 = y) is computed using (5.5.1).

Let B̈h be the vector associated with real distribution of Pr(βh−1 = y).

We conjecture that if all schedulable time-frames are uniformly dis-
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tributed among K positions, it results in:

B̈h ≤st Bh

This means the quantity Pr(βh−1 = y) computed by (5.5.1) is overvalued

for high values of y and undervalued for low values of y. Meanwhile, the

more unblocked positions there are, the potentially lower blocking it is.

Thus the above stochastic ordering implies the approximate probability is

the lower bound of time-blocking probability. A formal proof of the above

hypothesis needs further study.

5.6 An Upper Bound for Nonzero Scheduling Delay

The analytical approach we use in the previous section is illustrated through

the process composed by two dotted arrows in Fig. 5.11.

Figure 5.11: Hop-based computing process.

It is obvious that in order to compute time-blocking probability, we

must compute the probability distribution of Bh.

Let pt(y, y′) be the probability pt(βh−1= y,βh= y′). For short, we use

the notation pt(y, y′) in replacement of pt(βh−1 = y, βh = y′). pt(y, y′) is

the transition probability that there are y′ unblocked positions generated
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at hop h, transited from y unblocked positions generated at hop h − 1.

pt(y, y′) is illustrated as the solid arrow in Fig. 5.11.

5.6.1 Compact combination patterns

The exact computation of pt(y, y′) requires knowledge of concrete combi-

nation patterns at both two hops h− 1 and h that generate exactly y and

y′ unblocked positions, respectively. For large (K, a), it is impossible (see

discussion in Section 5.4.2. However, an approximation of pt(y, y′) can be

computed by considering transitions from only “compact” patterns of hop

h− 1.

Given â schedulable time-frames and (K−â) busy time-frames (again

we simplify the problem by noting that blocked and busy time-frames are

treated equally), let C̈ be the set of all combination patterns that each

generates exactly y unblocked positions.

In set C̈, there is a subset of combination patterns in which an individual

pattern is considered “compact”. A “compact” pattern is defined as a

combination that all y unblocked positions are grouped together. In other

words, a “compact” pattern at hop h − 1 has a sequence of continuous

y positions that are unblocked, and K−y continuous positions that are

blocked. Examples of compact pattern are illustrated in Fig. 5.12. We

Figure 5.12: K = 8, â = 3 and yh−1 = 5: the two uppermost patterns are compacted,

while the two lowermost are not.
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shall focus on deriving the quantity pt(y, y′) considering transitions only

from a compact pattern of y.

5.6.2 Transition matrix of pt(y, y′) for z = 1

Let P denote the transition matrix whose entries are probabilities pt(y, y′)

for all possible pairs of (y, y′), considering transitions from compact pat-

terns. We now focus on deriving P . Matrix P will be used for computing

the upper bound of time-blocking probability.

In this subsection, we focus on deriving the pt(y, y′) matrix for the case

z = 1. We shall discuss the extension for cases z > 1 later in Section 5.6.5.

Since ymax = y′max = K, the size of matrix P is K ×K (see Fig. 5.13).

P =




pt(0, 0) · · · pt(0, K)

pt(1, 0) · · · pt(1, K)

pt(2, 0) · · · pt(2, K)

· · · pt(y, y′) · · ·
pt(K, 0) · · · pt(K,K)




Figure 5.13: The transition matrix P for z = 1.

Theorem 5.6.1. For z = 1, the entry pt(y, y′) of the matrix P is given by:

pt(y, y′) =





1 , if y = y′ = 0(
K−y

a

)/(
K
a

)
, if 1 < y & y′ = 0

C(y, y′)
/(

K
a

)
, if 1 < y & 1 < y′ ≤ y + 1

0 , otherwise

(5.6.1)

where

C(y, y′) =

by′/2c∑
n=1

(
y′ − n− 1

n− 1

)(
y − y′ + n + 1)

n

)(
K − y

â− y′ + n

)
(5.6.2)
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Proof. If there is no unblocked position of hop h − 1, then there is no

unblocked position of hop h, thus pt(0, 0)=1. Also note that pt(y, y′)=0 for

all entries such that y=1 or y′=1, since these values do not exists.

For y > 1, in order to obtain y′ = 0, all a available time-frames of hop

h must be distributed in blocked positions. The total number of blocked

positions generated by hop h− 1 is K − y. There are
(
K−y

a

)
ways to do so

(shown in Fig. 5.14). Meanwhile, without any constraint, the total number

of ways to distribute a available time-frames of hop h is
(
K
a

)
. Thus, we

yield the second entry of eq. (5.6.1).

Figure 5.14: Computing pt(y, y′) for entries that y > 1, y′ = 0.

For 1 < y′ ≤ y + 1, we need some basic combinatorial examinations to

derive C(y, y′). Let n be the number of runs of 1’s that constitutes y′. We

have the bound of n:

1 ≤ n ≤ by
′

2
c (5.6.3)

Let m be the number of symbols ‘1’ that constitutes y′ unblocked positions

of hop h. Since z = 1, we have the following simple relation:

y′ = n + m (5.6.4)

For a given pair of (m,n) satisfying (5.6.3)-(5.6.4), we need to find the

number of ways to distribute the m symbols ‘1’ into the n runs such that

no empty is allowed, which yields
(
m−1
n−1

)
.
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Besides, note that n runs of 1’s can “float” inside a “compact” range

of y positions of hop h − 1. There must be at least one ‘0’ separating

two consecutive runs of 1’s. This is equivalent to the case that there are

n + 1 runs of 0’s (illustrated in Fig. 5.15). With two extra ‘0’ at two

ends of y range, the total number of symbols ‘0’ that can be distributed

into these n + 1 runs of 0’s is y − m + 2. The total number of ways to

distribute y−m+2 symbols ‘0’ into n+1 runs where no empty is allowed

is
(
y−m+2−1

n+1−1

)
=

(
y−m+1

n

)
.

Figure 5.15: There are n runs of 1’s, then there are n + 1 runs 0’s.

Furthermore, the other (a − m) available time-frames are blocked by

being distributed into (K − y) blocked positions, which yields
(
K−y
a−m

)
.

Thus, for a valid pair of (m,n), the number of ways C(n,m) to generate

y′ unblocked positions for hop h is given:

C(n,m) =

(
m− 1

n− 1

)(
y −m + 1

n

)(
K − y

a−m

)
(5.6.5)

The sum of (5.6.5) over all valid pair of (m,n) following (5.6.3)-(5.6.4)

yields C(y, y′) as in (5.6.2), which fulfills the third entry of (5.6.1).

Finally, note that for y > 1, if y′ > y + 1, then pt(y, y′)=0 since by

construction, for z = 1, transiting from a compact pattern of y unblocked
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positions, the unblocked range of hop h can expand at most 1 more position,

or y′max = y + 1.

5.6.3 Upper bound computation for z = 1

Let

B0
.
=

〈
Pr(β0)

〉

be the initial vector representing all possibilities of compact combination

patterns of the first hop (h = 0). Recall the notation

Bh
.
=

〈
Pr(βh)

〉

representing a distribution vector of Pr(βh). All vectors have the same size

of K + 1. We have the following result.

Theorem 5.6.2. For h > 1, Bh is computed by:

Bh = B0 ×Ph (5.6.6)

where entries of the matrix P is given in (5.6.1) and the entry p(β0 = y)

of the initial vector B0 is given by:

Pr(β0 = y) ={
K

y−a

(
a−1

y−a−1

)(
K−a−1
y−a−1

)/(
K
a

)
, if 2 ≤ y ≤ min{2a,K}

0.0 , otherwise
(5.6.7)

Proof. First, let us derive the initial vector B0. Note that Pr(β0 = y)

is the probability that the first hop generates y unblocked positions, or

equivalently x = K − y blocked positions. For 2 ≤ y ≤ min{2a,K}, eq.

(5.6.7) is a direct outcome of eq. (4.4.2) with the note that

u = b− x = (K − a)− (K − y) = y − a.

Besides, Pr(β0 = y) = 0 for y = 0 or y = 1 or y > min{2a,K}, since these

values do not exit at the first hop.
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Eq. (5.6.6) follows directly as the consequence that all possible tran-

sitions from hop h − 1 to hop h are taken into account in the transition

matrix P .

Corollary 5.6.3. Obtaining vector BH−2 =
〈
Pr(βH−2 = y)

〉
, eq. (5.4.2)

is used to compute the upper bound of time-blocking probability pu:

pu = Pr(αH−1 = 0) =
K∑

y=0

(
K−y

a

)
(
K
a

) Pr(βH−2 = y) (5.6.8)

5.6.4 Proof of the upper bound for z = 1

We now provide the formal proof of the upper bound for the case z = 1.

Let D be the set of possible distributions of y unblocked positions at hop

h− 1. Let d
.
= ‖D‖. In set D:

• denote κ0 the compact distribution.

• denote κi a random distribution i, i = 1, 2, · · · , d− 1.

Let q(y, κ0) be the probability that there are y unblocked positions of

hop h− 1, considering only a compact pattern. Thus:

q(y, κ0) = 1 (5.6.9)

Let q̈(y, κi) be the probability that there are y unblocked positions (of

hop h−1) associated with pattern κi, considering all distribution patterns.

Thus:

d−1∑
i=0

q̈(y, κi) = 1 (5.6.10)

Let y′ be the number of unblocked positions generated by a combination

Ç′ .
= s1s2 · · · sy−1sys̄1s̄2 · · · s̄K−y−1s̄K−y
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y y y y · · · y y x x · · · x

s1 s2 s3 s4 · · · sy−1 sy s̄1 s̄2 · · · s̄K−y

Figure 5.16: A transition from a compact pattern.

of time-frames at hop h , transitioned from y unblocked positions of the

previous hop considering only a compact pattern. An illustration is shown

in Fig. 5.6.4.

Let y′′ be the number of unblocked positions generated by a combination

Ç′′ at hop h, transitioned from y unblocked positions of the previous hop

considering a random distributed pattern. An illustration is shown in Fig.

5.6.4.

x y y x x y y · · · · · · y y

s̄K−y sy−1 sy s̄1 s̄2 s1 s2 · · · · · · s3 s4

Figure 5.17: A transition from a random distributed pattern.

There exists the mapping

Ç′ 7−→ Ç′′,

so that the order of symbols in the two sequences s1s2 · · · sy and s̄1s̄2 · · · s̄K−y

are unchanged, though the symbols in one sequence are distributed and

scrambled by symbols of the other sequence. An illustration is depicted

through Fig. 5.6.4 and Fig. 5.6.4.

If Ç′ is unique then Ç′′ is unique since the number of symbols of each

type (‘0’, ‘1b’ and ‘1’) are fixed. Thus, the mapping is 1-to-1: Ç′ ↔ Ç′′.

Remark 5.6.1. For an individual sequence Ç′ 7−→ Ç′′ we have y′ ≤ y′ if

z = 1. If all possible sequences of symbol Ç′ are considered, then y′ and

y′ are two random variables taking samples from a finite ordered space

E = {0, 1, 2, · · · , K}. Therefore:

y′ 6st y′′
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Remark 5.6.1 associated with (5.6.9) and (5.6.10) implies

Py,∗ 6st P̈y,∗ (5.6.11)

for all rows of P and P̈ . Thus, by Def. 5.2.2 we have:

P 6st P̈ (5.6.12)

By Theorem 5.2.1, BH−2 mentioned in Corollary 5.6.3 has lower stochas-

tic order than B̈H−2, which is the real distribution of Pr(βH−2 = y:

BH−2 6st B̈H−2.

Thus, we obtain the upper bound of time-blocking probability if the

computation is based on vector BH−2.

5.6.5 Extension for z > 1

Following are two steps to extend the analysis for general z > 1:

• Recompute the initial vector B0. (The results presented in Section

4.5 - Chapter 4 will be reused.)

• Recompute all entries pt(y, y′) of matrix P . (In fact, when z > 1,

deriving pt(y, y′) is a bit tedious.)

Deriving pt(y, y′) for z > 1

Lemma 5.6.4. The number of runs of ‘1’ constituting y′, n is bounded by:

1 ≤ n ≤ by
′ − (z − 1)

2
c (5.6.13)

Proof. The counting for z > 1 is illustrated in Fig. 5.18. Since the last

run of 0’s always has run-length li ≥ z, it contributes at least z unblocked

positions. However, we deduct z − 1 blocked positions and then consider
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Figure 5.18: Computing pt(y, y′) for general case z > 1.

that each run of 1’s contributes at least 2 blocked positions. Therefore, at

most we can have nmax = y′−(z−1)
2 runs of 1’s. Besides, it is obvious that

nmin = 1.

Lemma 5.6.5. Number of symbols ‘1’ constituting y′ blocked positions, m

is bounded by:

max{y′ − nz, n} ≤ m ≤ min{a, y′ − n− z + 1} (5.6.14)

Proof. Let o be the number of ‘0’ constituting y′. Since the last run of 0’s

always contributes z unblocked positions, and each of the other runs of 0’s

contributes at least one ‘0’ and at most z ‘0’s to y′0, given n we have:

(n− 1) + z ≤ o ≤ nz (5.6.15)

Since m = y′ − o, thus mmin = y′ − nz. However, note that we need at

least n symbols ‘1’ to separate n runs of 0’s, thus m ≥ n. Therefore,

mmin = max{y′ − nz, n}.
Meanwhile, mmax = y′− n + 1− z but note that m ≤ a, thus we obtain

mmax = min{a, y′ − n− z + 1}.
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As observed and analyzed in Section 4.5 - Chapter 4, when z > 1, we

must distinguish runs of symbols ‘0’:

• set U of u runs whose run-length li ≥ z;

• set V of v runs whose run-length 1 ≤ li < z;

Using the same analyzing process as used in Section 4.5 - Chapter 4, we

obtain some further bounds.

Given m satisfying (5.6.14), then:

1 ≤ u ≤ min{n, by
′ −m

z
c} (5.6.16)

and

d bv

z − 1
e ≤ v ≤ min{bv, n− u} (5.6.17)

where

bv = y′ −m− uz ≥ 0 (5.6.18)

is the number of ‘0’ belonging to all runs v ∈ V.

Given a pair of (u, v) satisfying (5.6.16)-(5.6.17), we turn to count the

number of ways to:

(i1) distribute m symbols ‘1’ into n runs where no empty is allowed, which

yields the number
(
m−1
n−1

)
.

(i2) distribute bv symbols ‘0’ into v runs such that no empty allowed and

each run has maximum (z − 1) symbols ‘0’. This is the number Cbv

given in eq. (4.5.10) in Section 4.5 - Chapter 4.

(i3) distribute bu symbols ‘0’ into u + 1 runs with some clear constraints.

(i4) arrange runs of U and runs of V.
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For items (i3) and (i4), we need a little further understanding of the case

we are counting. Let us examine Fig. 5.18 where two special runs of

0’s are shown. The first run does not contribute any unblocked position.

This run belongs to neither U nor V. Imagine that there is one virtual ‘0’

permanently placed in this run, then this run is never empty while we do

counting.

The other special run is the last one that takes extra z positions. This

run always belongs to U since its minimum length is z. Since this run ∈U
has a fixed position, the number of ways to do item (i4) is

(
u−1+v

v

)
.

Next, we find bu, the number of ‘0’ that is later distributed in all runs

of U plus the first run:

bu = (y′ −m− bv) + (y − y′) + z + 1

= y + z + 1−m− bv (5.6.19)

We then put (z−1) symbols ‘0’ in each run ∈ U in advance. The remaining

bu − u(z − 1) symbols ‘0’ are distributed in u + 1 runs such that no run

is empty. Thus, we obtain the number of ways to do item (i3) (after

substituting bu and bv):

Cbu
=

(
bu − u(z − 1)− 1

u + 1− 1

)
=

(
y − y′ + u + z

u

)
(5.6.20)

Besides, note that the other (a − m) available time-frames of hop h are

blocked by distributing them into (K − y) blocked positions, yielding the

number
(
K−y
a−m

)
. Hence, for a pair of valid (u, v), the number of ways to

generate y′ unblocked positions at hop h is given:

C(u, v) =

(
u− 1 + v

v

)(
m− 1

u + v − 1

)

×
(

y − y′ + u + z

u

)
Cbv

(
K − y

a−m

)
(5.6.21)

where Cbv
is given in eq. (4.5.10) (Section 4.5 - Chapter 4).
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Summing up C(u, v) for all pairs of (u, v) yields C(y, y′|n) for a given

n:

C(y, y′|n) =
∑

all m

∑

all u

∑

all v

C(u, v)
∣∣
u+v=n

Summing up C(y, y′|n) for all n yields C(y, y′):

C(y, y′) =

by′−(z−1)
2 c∑

n=1

C(y, y′|n) (5.6.22)

=

by′−(z−1)
2 c∑

n=1

min{a,y′−n−z+1}∑

m=max{y′−nz,n}

min{n,by′−m
z c}∑

u=1

min{bv,n−u}∑

v=d bv
z−1e

C(u, v)
∣∣
u+v=n

We are now ready to extend Theorem 5.6.1 for the case z > 1.

Theorem 5.6.6. For z > 1, the entry pt(y, y′) of the matrix P is given by:

pt(y, y′) =



1.0 , if y = y′ = 0(
K−y

a

)/(
K
a

)
, if y′ = 0 & z < y

C(y, y′)
/(

K
a

)
, if z < y ≤ K & z < y′ ≤ y + z

0.0 ,otherwise

(5.6.23)

where C(y, y′) is given in (5.6.22).

Deriving vector B0 for z > 1

Each entry of the initial vector B0 for z > 1 is computed by:

Pr(β0 = y) =

{
C(x)

/(
K
a

)
, if z + 1 ≤ y ≤ min{a(z + 1), K}

0.0 , otherwise
(5.6.24)

where x = K − y and C(x) is given by eq. (4.5.11) in Section 4.5.1 -

Chapter 4.

The formal proof for the upper bound when z > 1 follows the same

approach as used in Section 5.6.4. However, the mapping operator is very

complex and we skip the presentation for it.
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5.7 Evaluations

The computed bounds are evaluated by comparisons between numerical

results and simulation results. Simulations are based on the Monte-Carlo

approach. Given parameters K and H, a matrix is generated. Then each

row of the matrix representing a hop is loaded uniformly until b time-

frames out of K are set to be ‘0’. An attempt to find a schedule from

the first hop until the last hop is made with the rule strictly follows a

certain z-forwarding scheme that all switches along the route deploy. If no

schedule is found, a blocking event is counted. After each attempt to find

a schedule, the matrix is reset and reloaded. For each simulated point in

graphs, 10× 106 iterations are tried.

In all graphs, the upper bound of time-blocking probability, pu, is com-

puted based on the analysis presented in Section 5.6. The lower bound

of time-blocking probability pl is computed using the analysis derived in

Section 5.5. We also compute the approximation curves using the following

equation:

papp =
√

pu pl (5.7.1)

To obtain high precisions of numerical results, we use MAPM library

[55] for computing.

We notice that the gap (we call it error) between a simulation curve

and a bound one slightly increases as the more possible scheduling delay is

allowed (from z = 1 to z = 3). However, the load difference between two

curves is in a scale of 1% to 2%.

Though the individual error of either upper bound or lower bound in-

creases as either the hop-length or the scheduling delay increases, we still

capture a very good accuracy of the approximation computed through eq.

(5.7.1). This is because the two errors eliminate each other since they

grows in opposite direction.
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We also notice that there is a significant improvement of time-blocking

probability if there is one or two scheduling delay is allowed (z = 1 or z = 2

vs. z = 0). However, the gain is not as that much if we increase z (e.g.,

z = 3 vs. z = 2). This is a consent with the conjecture that only very few

buffering is required in TDS-FλS networks.

Fig. 5.22-5.23 show blocking probability performances when there are

multiple channels per hop. Obviously, FλS allows to obtain very high

throughput network. For example, a good combination of two dimensions

(time and wavelength) such as z = 2, C = 16 is good enough to maintain

the blocking performance around 10−3 even the normalized load reaches

0.8.

Figure 5.19: Evaluations for 5 hops path, K = 64, and z varies.
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Figure 5.20: Evaluations for 5 hops path, K = 128, and z varies.

Figure 5.21: Evaluations for H = 7, K = 128, and z varies.
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Figure 5.22: Blocking performance for H = 7, K = 128, and z = 1 and number of

channels per hop varies.

Figure 5.23: Blocking performance for H = 7, K = 128, and z = 2 and number of

channels per hop varies.
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Chapter 6

Prototype and test-bed

Previous chapters are dedicated for various theoretical works, including

some node designs based on the use of tunable lasers; scheduling feasibili-

ties; and a thorough analysis about the time-blocking issue. In this chapter,

we close our work by introducing the first time-driven switching (TDS) ever

implemented in our lab at DIT-University of Trento.

Particularly, this chapter focuses on UTC-based FPGA (field programmable

gate-array) controller that was implemented for controlling the TDS switch

prototype. The switch controller facilitates dynamic configuration of ultra

scalable switch. The prototype is implemented using off-the-shelf compo-

nents. Preliminary results point out that TDS architecture is especially

suitable to support high capacity streaming media applications over the

Internet.

6.1 Field programmable gate-arrays

The field programmable gate arrays (FPGAs) have gone main stream. The

newest generation of FPGAs have hit performance and cost goals which

allow a much wider spectrum of applications support. Now a day, flexi-

bility and large number of functions are needed in each protocol layer for

providing quality of service in data networks, but current networks are far
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from rich in terms of flexibility. To help remedy this situation, we have de-

signed and implemented a FPGA based switch controller for ultra scalable

TDS architecture. A switch controller is the brain of TDS architecture.

The function of controller is to dynamically configure the switch.

Bandwidth of optical fiber is growing at faster rate than the speed of

silicon therefore switching scalability is an issue. Usually, a network pro-

cessor (NP) is used for switching purpose in the network. NP acts as a

traffic manager, which occupies the space between a network interface and

a switch fabric in a switch/router. NPs are specialized CPUs optimized to

support the implementation of network protocols at the highest possible

speed. The overarching emphasis on speed results in unconventional hard-

ware architectures that create new challenges for the software engineer. For

example, Ciscos top-of-the-line router with a novel NP design, the CRS-

1, has 640 Gbit/s per chassis [the announcement of 92 Tbit/s should be

divided by 2 (for counting input and output separately) and then by 72

chassiss], which represents a factor of 2 improvement after 5 years of de-

velopment with 500 million dollars of investment. So, if the internet traffic

is doubling, say, every 18 months there is a real switching bottleneck on

the horizon.

The implemented FPGA based optoelectronic switch controller for TDS

switches is a simple and low cost alternative to network processor. The

TDS switch architecture guarantees deterministic QoS for streaming media

over the Internet and is scalable to speed of 10-100 Tbit/s.

Some applications of FPGA in communication network have been re-

ported in the literature. In [4], the integration of FPGA-based controller

with optical transponder was suggested. In [45], authors reported a telecom-

munication oriented FPGA for implementing programmable ATM adapters.

A high speed serial transceiver running at sub-nominal rate to recover data

is presented in [66]. A complex FPGA-based controller for contention res-

108



CHAPTER 6. PROTOTYPE AND TEST-BED

olution in an optical packet router was reported in [76]. In fact, the lack

of optical random access memory (ORAM) and all-optical processing tech-

nologies and the use of fiber delay link for storing and forwarding caused

the complexity of the work in [76].

In this chapter we present the FPGA-based controller for dynamic con-

figuration of ultra scalable TDS switch fabric. Details of other parts of

prototype are out of scope of the chapter, though the complete prototype

has been briefly described in subsequent sections.

The test-bed presented in this chapter aims to realize the timing and for-

warding principles of TDS/FλS, which is thoroughly discussed in Section

2.2 of Chapter 2. Section 6.2 describes scalable TDS switching architec-

ture with emphasis on FPGA based switch controller, Section 6.3 presents

experimental demonstration of the switch prototype, Section 6.5 discusses

the presented work and open issues.

6.2 Ultra scalable switch architecture

The functional diagram of a TDS is shown in Fig. 6.1. It has three major

parts: a global positioning system (GPS) time receiver; a switch controller

(or simply controller); and a switch fabric.

The switch fabric is a set of interconnected switching boards, which can

be connected in various forms (e.g., matrix, single stage, multistage etc).

Operations of the switching fabric is controlled by the switch controller.

GPS receiver is connected to GPS antenna, which is mounted externally

facing the open sky (not shown in the Fig. 6.1). The communication

between controller and switching boards can be either parallel or serial.

There are multiple control signals such as I/O enable, switching board

status and so on. However, for the sake of simplicity, we only show three

important classifications: address, data path and strobe signal.
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Figure 6.1: Functional block diagram of a TDS switch.

Control data (including output register addresses and their input chan-

nel selections for every time-frame) are stored in the memory of the con-

troller. The data and address path are used to transfer controlled register

address and input channel selection, which are then written in registers of

main-switching boards. The writing process must end before the falling

edge of the strobe signals, which corresponds to the start of the next time-

frame. At the falling edge of strobe signal, a new switching configuration

is latched on all switching boards. The new switch configuration is ready

in less than 10 ns.

6.2.1 GPS receiver

The GPS receiver, which is EPSILON Board OEM II [58], provides accu-

rate and stable time and frequency signals for synchronization. It provides

1PPS (pulse per second) and 10 MHz sine wave, and time-of-day out-

put. Furthermore, the 10 MHz frequency reference is always locked to the

1PPS, which is the standard Universal Time Coordinated (UTC) second.

This implies that within 1PPS there are exactly 10,000,000 cycles of the

10 MHz output from the GPS card.
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6.2.2 Mindspeed switch board

Mindspeed switch board [44] - the primary component of switching archi-

tecture is a low-power complementary metal oxide semiconductor (CMOS),

high-speed 144x144 cross point switch with integrated clock data recovery

(CDR), input equalization, and built-in system test and broadcasting fea-

tures. Each CDR is preceded by a programmable input equalizer (IE). The

IE removes inter symbol interference (ISI) jitter usually caused by printed

circuit board (PCB) skin effect losses. It offers programmable switch con-

figuration to switch off unused portion thus reduces power consumption.

Each CDR can be independently bypassed and turned off if not in use.

6.2.3 Switch controller

Opal Kelly XEM3001 module [31] is used for implementation of switch con-

troller. The XEM3001 consists of an electrically erasable programmable

read only memo (EEPROM), a universal serial bus (USB) 2.0 micro-

controller, a phase-locked loop (PLL), a 400,000-gate Xilinx Spartan-3 field

programmable gate array (FPGA) submodule and 1 MHz to 150 MHz

multi-output clock generator. The block diagram of implemented FPGA-

based controller is shown in Fig. 6.2. Very high speed integrated circuit

hardware description language (VHDL) is used for the implementation of

the FPGA sub module controller.

In Fig. 6.2, main FPGA submodule blocks are control logic (CTRL),

memory table, GPS Interface and Mindspeed switch controller. The imple-

mentations of all functional blocks in VHDL are synthesized in a single bit

file that is stored on a PC. This file can be easily uploaded to the FPGA

through a USB connection. This implementation provides flexibility for

updating the controller with new versions of VHDL program.

The bit file is downloaded to configure the FPGA every time the con-
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Figure 6.2: Functional block diagram of a TDS switch.

troller is started. In the prototype presented in this chapter, we have used

one controller for controlling two Mindspeed switch boards. There are two

scheduling finite state machines (FSMs), each for a board respectively. A

master clock for all blocks of Spartan-3 FPGA submodule is taken from

an external PLL chip. The GPS interface communicates with the GPS re-

ceiver mentioned in Section 6.2.1 via a serial link. The GPS interface also

allows remote configuration and status reporting. Two signals, 10 MHz

sine-wave and 1PPS, are used as clock sources for the scheduling FSMs.

GPS status control sub-block are used to monitor correct locking of the

receiver with signal from GPS.

The Conditioning Block composed of discrete electronics required to

condition clock signal coming from GPS receiver to make it compatible

with CMOS pins of the Spartan-3 FPGA submodule. USB control block

(CTRL) is the interface between PC and the internal sub-blocks config-

uration registers implemented in other sub-blocks on Spartan-3 FPGA.

Memory table and Mindspeed switch control sub-blocks are described in
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following subsections.

Memory table

Memory table is in a matrix format and stores switching configurations of

all channels and for all time-frames. The size and structure of the table

depends on timing parameters and number of switching channels. Timing

parameters are time-frame duration, number of time-frames per time-cycle,

number of time-cycles per super-cycle, which is equal to one UTC second.

Memory table can be configured from the graphical user interface (GUI)

on PC through the USB communication link. For complete switch config-

urations (i.e., 144 channels per switching board, with multiple boards),

216-kbits of block RAM [8] embedded in the FPGA will not be enough

then an external SRAM should be added. For future development with

network protocols, memory table will be updated according to signaling

protocol between distant TDS switches. The signaling issue is outside the

scope of this chapter.

Mindspeed switching board controller

The block Mindspeed Switch CTRL0/CTRL1 represents a FSM that con-

trols and connects all the sub-blocks implemented on FPGA module. At

every clock cycle it reads the input status register connected to a USB

wire. This block consists of scheduling FSM, serial peripheral interface

(SPI) and Switch Status Control sub-blocks. These blocks are detailed in

the following descriptions.

Scheduling FSM

One scheduling is required for each Mindspeed Switch Board and number of

FSM modules can be implemented for number of switching boards. There

are three important counters: time-frame counter, time-cycle counter, and
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UTC second counter. There are two reference input signals to controller

through GPS receiver. One is 1PPS and the other is 10 MHz. Every UTC

second (1PPS) is divided into number of time-cycle and every time-cycle

is divided into number of time-frames. The base unit of time is given by

1/10 MHz=100 ns and it is a reference for counters.

All counters are 16-bit implementation. The time-frame duration is the

integer multiply of time resolution. The number of time-frame, time-cycle

and time-frame duration can be modified by changing the corresponding

parameters stored in registers, which are accessible via USB from PC. The

strict criterion is that the product of time-frame duration and number of

time-frames and number of time-cycles must be equal to one UTC second.

At the beginning of every time-frame the FSM downloads a new switch-

ing configuration cyclically to the Mindspeed switch board and activates

hardware strobe via SPI. All the data are stored into a memory table

which is read sequentially. When a new time-cycle starts, the pointer in

the memory table is reset to the first memory location. This is the cyclic

operation of the controller. 1PPS pulse resynchronizes all the FSMs. If

the download terminates before the 1 Hz clock goes high the FSM stops

in a waiting status until the 1PPS clock reset and restart whole process.

It means any malfunction will last maximum one UTC second.

Fig. 6.3 shows simulated hardware strobe generated by time-frame

counters using 10 MHz GPS clock. The right side of Fig. 6.3 shows

the effect of re-synchronization with the UTC 1PPS. Various switch func-

tions are accessed through 8-bit registers (memory), which are resolved by

the 10-bit address bus. The contents of the registers are transferred via an

8-bit data bus during a read and write operations.
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Figure 6.3: Timing diagram of a FSM.

Serial parallel interface

SPI is used to transfer data between PC and Mindspeed boards in both

the directions through USB. This block implements a FSM that meets the

timing and shape specifications given by Mindspeed M21151 data sheet

[44]. The maximum input clock is 50 MHz and SPI operate at 25 MHz

(i.e., a half of input clock).

Data writing using SPI takes 20 SPI clock cycles (1 start bit, 1 RD/WR

bit, 10 address bits, 8 data bits), which is 0.8 µs for downloading one

channel configuration. For a configuration with 100 µs time-frame length,

a single FPGA implemented SPI peripheral is able to load up to 125 channel

configurations. When more number of switch configurations loading is

required, it is possible to programme SPI clock up to the maximum speed

(25 MHz), which is supported by Mindspeed board.

More than one SPI peripherals can be implemented in the same FPGA

for increasing the speed and for scalability. For a large system with multiple

switch boards, a 18-bit parallel interface has been implemented and tested.

The high downloading speed of 100 MHz (i.e., 10,000 switch configurations
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can be downloaded in 100 µs time-frame duration). This incentive comes

at the price of complex interconnections of switch fabric.

Switch status control

Switch status control (SSC) sub-block checks the loss of signal (LOS) status

of the board. A LOS circuit is included on each input and detects whether

valid data is present or not. LOS acts as an alarm and can be used to

inhibit the signal into the switch core when the data to the input terminal

is lost. If the input signal is clamped high or low, or if the difference

between the input data rate and the programmed data rate is greater than

approximately ±100 Mbit/s, the LOS alarm will be activated.

Software interface

The interaction between a PC and an FPGA board consists of two layers.

First layer software is based on C++ classes of Opal Kelly library [31]. This

type of interface uses more than one 8-bit pipes in order to transfer data.

The second layer is a simple graphical user interface (GUI), developed using

VC6++ [18]. The GUI is a set of dialog boxes that react to events like

switch start/stop, input/output channel connection configuration. Switch

configurations can be easily edited and updated by users.

6.3 Prototype Implementation and Testing

The complete prototype setup photograph diagram is shown in Fig. 6.4.

The prototype major components are streaming media sources (audio,

video and text); a network interface for packets scheduling; 25 km sin-

gle mode optical fiber; and multiple Mindspeed switch fabrics (each with

capacity of 144 channels of 3.2 Gbit/s with total switching capacity of

420 Gbit/s).
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The source side switch fabric is a two-stage network implemented by

connecting two Mindspeed switches. Two switches are controlled and con-

figured by a single FPGA switch controller. On receivers side of the 25 km

single mode optical fiber, there is another switch fabric consists of one

Mindspeed switch associated with another FPGA switch controller. Two

receivers for receiving and playing the two movies with sound and sub-

titles. Standard single mode and multimode transceivers have been used

for optical interconnections between various electrical-to-optical and vice

versa conversion.

Figure 6.4: A photograph of the prototype.

The switch prototype experimental setup is shown in Fig. 6.5. Two

media streams destined for two different receivers: one DVD movie with

soundtrack and subtitles; the other animation movie with soundtrack. The

streams are transmitted from one source PC (shown IP Stream) using VLC

media player [2].

Asynchronous packets are sent to a network interface (the detail of net-

work interface is out of scope of this paper), which schedules incoming

packets so that they are forwarded in synchronization with 1PPS signal
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from GPS through the GPS antenna (not shown in Fig. 6.5).

Figure 6.5: The prototype setup.

The media streaming packets from two sources are forwarded via an

optical link by the network interface through transceivers to source side

switch fabric during different predefined time-frames. The packets are split

into two streams by the first switching stage.

These separate streams from the first stage are forwarded to the second

stage through electrical connections. At the second stage both streams

are again mixed by the cross point switches. Then the mixed stream is

transmitted to receivers side through transceiver and 25 km single mode

optical fiber link. On the receiver side mixed stream received through

transceiver is separated into two streams by switching. Separated streams

are forwarded to two receivers. Switching of all three cross point switches

and network interface are synchronized with 1PPS received from GPS.
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6.4 Experimental results

The eye pattern test is a quick method for visually examining the quality

of serial signals, e.g., the amount of timing jitter and amplitude variation

in a serial data streams. A synchronous clock and/or the clock recovered

from the data, triggers the oscilloscope. In one captured screen, all possible

signal transitions of the signal are displayed: positive-going, negative going,

leading, and trailing. This single display provides information about the

eye opening, noise, jitter, rise and fall times, and amplitude.

Figure 6.6: The eye pattern with mask: 1000BSX/LX (1.25 Gbit/s) at location 1.

The two-dimensional shape can easily be compared to a standard mask.

Fig. 6.6-6.10 shows actual eye diagrams as captured on a real-time Tek-

tronics [14] TDS 6604, 6 GHz digital storage oscilloscope. The oscilloscope

has built in standard Gigabit Ethernet 1,000 base SX-LX mask test. The

measurements are carried at various locations (1, 2, and 3) indicated in

Fig6.5. At point 2 and 3, measurements were repeated using 25 km single

mode fiber (2ss, 3ss). Note that the boundaries of all these eye diagrams,

which pass the compliance test, are within the ranges expressed by masks

(in dark blue color). Moreover there is sufficient margin between the signal
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Figure 6.7: The eye pattern with mask 1000BSX/LX (1.25 Gbit/s) at location 2 with

multi-mode fiber.

Figure 6.8: The eye pattern with mask 1000BSX/LX (1.25 Gbit/s) at location 2 with

single mode fiber.

and the mask.
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Figure 6.9: The eye pattern with mask 1000BSX/LX (1.25 Gbit/s) at location 3 with

multi-mode fiber.

Figure 6.10: The eye pattern with mask 1000BSX/LX (1.25 Gbit/s) at location 3 with

single mode fiber.

6.5 Discussions

This chapter presented the implementation and testing of a low cost ultra

scalable TDS switch prototype. The FPGA based controller for dynami-
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cally configuring the ultra scalable IP-packet switching is the main logic

component of this prototype. The beauty is that the simplicity of this re-

alization did not compromise two most desired performance properties for

the future Internet: (1) switching scalability up to more than 10 Tbit/s in

a single chassis and (2) predictable QoS performance for streaming media

and large (content) file transfers. There is some delay between the source

and the receiver streaming media play. This delay is contributed by prop-

agation delay and mainly due to buffering in the media player because the

media player is designed for streaming media over asynchronous IP packet

switching network. Designing and using the TDS friendly media player

will reduce the delay significantly.

There are a few open issues that require further investigation in order

to implement even larger TDS switch. One of the issues is the scalability

of the FPGA switch controller for controlling large number of channels

and switching components. Another issue is corresponding to the FPGA

memory requirements for storing configurations for all channels and time

frames. Memory is scalable because there is a provision for expanding the

internal Spartan-3 RAM using external SRAM BLOCK for adding external

SRAM chips.

Another important aspect is time taken by controller to configure very

large matrix of switching elements for supporting larger number of optical

channels. There are at least two possible solutions. One is the imple-

mentation of multiple SPIs on the same FPGA for configuring multiple

switching elements simultaneously. The use of multiple SPIs for connect-

ing many Mindspeed switching chips increases the scalability of the system.

Another way is the development of dedicated parallel connectors for fast

configuration of large number of Mindspeed switches. But this speed may

come at the price of complex interconnection.

Other open issue is time-frame alignment when the delay between two
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switching channels is not integer multiple number of time frames. To over-

come it time-frame alignment module is necessary [4]. Bit synchronization

is another issue that requires further investigation in order to determine

the most appropriate solution.
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Conclusion

TDS/FλS introduces a truly novel approach to networking fields. In TDS/

FλS, timing issues are fully addressed to obtain an accurately synchronous

network worldwide with lowest costs. Once all network nodes are strictly

synchronized, the well-known pipeline forwarding principle is possible, thus

helping eliminate one of the most expensive operations at routers/switches

- the packet header processing. This in turn helps remedy a scalability

issue of current router/switch architectures. Moreover, QoS emerges as a

bonus in TDS/FλS thanks to pipeline forwarding schemes. This thesis con-

tributes some important research results to favor this promising networking

technology - the TDS/FλS.

7.1 Towards the reality of sub-wavelength switching

Various theoretical and experimental attempts have been contributed to re-

alize all-optical sub-lambda switching. Some being abundantly mentioned

are slotted/unslotted optical burst switching, time-wavelength interleave

networking, time-slot interchange with WDM, etc. Still none of mentioned

technologies has been realized. These technologies require either a sophisti-

cated asynchronous control plain or lot of buffering to resolve contentions

in order to obtain some moderate blocking performance. Several others
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require a strict network synchronization but fail to obtain it properly.

Tunable laser - an advanced optical device is emerging and shifting

fast towards high speed applications. Within few more years, stable and

wide-range tunable lasers operating at ns speed are expected to be com-

mercialized. At that time, the integration of this advance device into TDS

will introduces to FλS-the technology that enables a true sub-wavelength

switching capability. This helps leverage the power of DWDM technology

at a higher level towards the networking area. Consequently, we introduce

some novel designs described in chapter 3. We consider this contribution

as one among many possibilities towards the realization of sub-wavelength

switching in the optical networking domain.

7.2 High throughput network with few buffering

The combination of time, space, and wavelength dimensions in FλS makes

it possible to reach high throughput while maintaining low blocking per-

formance. Some initial efforts and results of the blocking performance

presented in chapter 4 and 5 have confirmed this property.

Conventionally, analyzing blocking probability has been done thoroughly

at a call level for many different networks. We tackle the problem in a

different way. The analysis shown in chapters 4 and 5 mostly based on

combinatorics and probability. Given a certain link load level, the analysis

of time-blocking probability involves in counting various possible combina-

tions of busy, blocked, available, and schedulable time-frames under various

strict constraints. In fact, nonzero scheduling delays allow more flexibility

in scheduling time-frames and thus help reduce the blocking probability.

However, they also create a higher level of complexity that makes the anal-

ysis untraceable for large systems (in terms of the number of time-frames

per time-cycle). An approximation with lower bound and upper bound has
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been derived in chapter 5.

Various numerical results have shown that allowing one or two time-

frame scheduling delays significantly reduce the blocking probability in

TDS/FλS. Another major remark we should mention is that much further

improvements can be obtained if we increase the number of time-frames per

time-cycle and in the meantime take the advantage of DWDM technology

at link layer by allowing multiple channels per link/hop. All in all, we

believe that a very high throughput networks based on FλS technology

with very few buffering per node is practical.

The study has not been completed in the sense that only strictly non-

space blocking switch is considered in all cases. In practice, space blocking

fabrics such as multi stage Banyan structures are frequently met, thus

the combination of space and time blocking are more interesting and de-

served further studies. Besides, another dimension to extend the research

is the blocking analysis for cases when wavelength swapping is possible.

As discussed and proposed in chapter 3, full wavelength swapping can be

implemented using tunable lasers or wavelength converters. Another pos-

sibility to obtain full wavelength swapping is the use of electronics switches

as we implemented in the prototype described in chapter 6.
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Appendix A

Proof of equation (4.5.10)

Following is the proof of eq. (4.5.10).

First, let us find the number of ways C(m,n, p) to put m identical balls

into n distinct boxes such that no box has more than p balls, p > 1.

(While this may look like a classic combinatorial problem, we failed to find

appropriate references also outside the field of blocking probabilities.)

The above problem is equivalent to finding the number of integer solu-

tions to the equation:

e1 + e2 + e3 + ... + en = m 0 ≤ ei ≤ p

The generating function for the above equation is:

h(x) = (1 + x + x2 + x3 + x4... + xp)n

The problem turns to find the coefficient of xm in the polynomial h(x).

From a well-known polynomial identity

1− xp+1

1− x
= 1 + x + x2 + x3 + ... + xp

we can represent

h(x) = f(x)g(x)

where

f(x) =
1

(1− x)n
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and

g(x) = (1− xp+1)n

Following are polynomial expansions in chapter 3 of [68]:

f(x) =
1

(1− x)n
=

∞∑
i=0

αi

where

αi =

(
i + n− 1

i

)
(A.0.1)

and

g(x) = (1− xp+1)n =
n∑

i=0

βi(p+1)x
i(p+1)

where

βi(p+1) =

{
(−1)i

(
n
i

)
if i = 0, 1, .., n

0 otherwise
(A.0.2)

Therefore, h(x) can be rewritten as

h(x) =
∞∑

q=0

Λqx
q

where the coefficients Λq are given by:

Λq =

q∑
i=0

αq−iβi (A.0.3)

We aim at finding the coefficient of xm in h(x), thus we only need to

consider the terms αm−iβi in which the βi’s, coefficients of g(x), are nonzero.

Substitute q = m into (A.0.3), we have:

C(m,n, p) = Λm =
∑n

i=0

(
m−i(p+1)+n−1

m−i(p+1)

)
(−1)i

(
n
i

)

=
∑n

i=0 (−1)i
(
n
i

)(
m−i(p+1)+n−1

n−1

)
(A.0.4)
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In our problem, we need to find the number of dispositions of the bv

symbols ‘0’ into the v distinct runs such that each run has at least one

symbol and no run has more than (z − 1) symbols. We first put in each

run one symbol, then distribute bv − v remaining symbols so that no more

than z − 2 symbols will be distributed into each run. Thus, substituting

m = bv − v, n = v, and p = z − 2 into (A.0.4), we obtain:

Cbv
=

v∑

i=0

(−1)i

(
v

i

)(
bv − i(z − 1)− 1

v − 1

)

for v > 0.

Besides, notice that:

• if v = 0, we set Cbv
= 1 since Cbv

is a factor of a product.

• if bv = v then obviously Cbv
= 1.

Thus, we obtain the number Cbv
as in 4.5.10.
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Proof of multiple counting while

deriving (4.5.6)

Following is the proof of multiple counting while deriving eq. (4.5.6).

Let Σ denote the set of all combinations generated in the product

CuvCaCbu
Cbv

.

Consider one pattern χ1 drawn at random from Σ, and label all runs of

χ1 in an increasing order within their proper set as following:

χ1 = u1a1v1a2 · · · ui · · · aj · · · vk · · ·uu · · · vvau+v

in which ui ∈ U, vk ∈ V, and aj ∈ A; i = 1, 2, ··, u; k = 1, 2, ··, v; and

j = 1, 2, ··, u + v.

By construction, also all the following patterns are items of the set Σ

and they are distinct:

χ2 = v1a2 · · · ui · · · aj · · · vk · · · vvau+vu1a1

· · ·
χu+v = vvau+vu1a1v1a2 · · ·ui · · · aj · · · vk · · ·

It is clear that χ2, · · · , χu+v are also obtained as s-position shifts of χ1,

with proper s < K.
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More formally, letting←−χi
s denote a left shifting on χi with shifting length

s, and | ∗i | length of a generic run ∗i, we have:

←−χ2
|u1|+|a1| ≡ χ1

... ≡ χ1

←−−χu+v
|u1|+|a1|+|v1|+|a2|+·+|ui|+·+|aj |+·+|vk|+· ≡ χ1

Since χ1 was selected randomly, we conclude that any χi appears exactly

(u + v) times in the total number KCuvCaCbu
Cbv

.
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Acronyms

AOTF acoustooptical tunable filter

AWG arrayed waveguide grating

CDR integrated clock data recovery

CMOS complementary metal oxide semiconductor

CTR common time reference

DBR distributed Bragg reflector

DeMUX de-multiplexing

DFB distributed feedback

DSDBR digital supermode distributed Bragg reflector

DTOF digitally tunable optical filter

EAM electroabsorption modulator

ECL external-cavity laser

EEPROM electrically erasable programmable read only memo

FBG fiber Bragg grating
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FDL fiber delay line

FLP fractional lambda pipe

FLS fractional lambda switching

FP Fabry-Perot

FPGA field programmable gate array

FPGAs field programmable gate arrays

FWM four-wave mixing

GPS global positioning system

IF immediate forwarding

ISI inter symbol interference

ITU international telecommunication union

MEMS micro-electromechanical structure

MGY modulated grating Y-structure

MUX multiplexing

MZ Mach-Zehnder

NIF non-immediate forwarding

OADM optical add-drop multiplexer

OBS optical burst switching

OPS optical packet switching

ORAM optical random access memory
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PCB printed circuit board

PIC photonic integrated circuit

PLL phase-locked loop

QoS quality of service

RAM random access memory

RIN relative intensity noise

SFR semiconductor-fiber ring

SGDBR sampled grating DBR SOA Semiconductor optical amplifier

SMSR side-mode suppression ratio

SOA semiconductor optical amplifier

TDM time division multiplexing

TDS time-driven switching

TEC thermoelectrical cooler

TFF thin film filter

TSI time slot interchange

TTF torsional tunable filter

TWIN time-domain wavelength interleaved network

USB universal serial bus

UTC Universal Time Coordinated

VHDL VHSIC hardware description language
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VOA variable optical attenuation

WR static wavelength router

XAM cross-absorption modulation

XGM cross-gain modulation

XPM cross-phase modulation
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