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Abstract of The Masters Thesis 

 

 

Internet traffic continues to grow exponentially due to steady expansion of its 

service areas and it is foreseen that it will be dominated by stream media flows, 

such as, audio/video telephony or conferencing, distributed gaming, virtual reality 

and many others. Additionally, since data and telecom network are merging to the 

dream trend ‘all-IP’, the use and the presence of 802.11 network is expanding 

beyond corporate offices and hotspot to home users and is becoming one of the 

access networks of choice. So there is a real need to improve forwarding scalability 

of IP packets to provide Quality of Service, especially for stream and real-time 

traffic from core network to mobile user. A lot research is being carried out in this 

field from data link layer to application layer. However, very few have researched 

the use of ‘global time’ to solve the stated scalability problem. It has already been 

realized, implemented and experimented that (universal coordinated time) UTC-

based packet forwarding is able to solve the scalability issue.  

This thesis endeavors to find an optimal and cost-effective solution for the 

wireless extension of time-driven packet forwarding to the 802.11 network. It also 

aims to implement the idea and divulge the experimental results. This work 

presents a kernel based prototype solution of synchronous scheduler for 802.11 

network for an access network interface to time-driven network. It has been 

implemented directly in kernel space of Linux operating system that manages 

network layer and partially MAC layer of an Access Point.  

The problem is of great complexity due to the non-modifiable device 

dependent routines that manage MAC and PHY layer of 802.11 stack and 

unavailability of device specification from vendors. However, this work has devised 

and implemented two versions of packet scheduler. First one is open-loop that 

shows only plausibility of synchronous time-driven scheduling but experimented 

that, it is hard to implement on existing hardware. The second one is close-loop 

approach, where the local clock generated by the access-point is aligned 

periodically with the UTC-based time from the externally connected time-driven 

network. It's feasible to implement this approach on existing hardware. 

 

IP packet switching, 802.11 wireless network, time-driven network,   

network layer protocol stack of Linux kernel.   
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Chapter One:  
 

Introduction 
 
 
 

 
Internet traffic is growing steadily, about doubling in every year. Online 

interactive entertainment, multimedia streaming, voice/video/TV over IP, 
various real-time application are already deployed up to the massive 
number of end-user. Now it is expanding services. So service-wise and 
traffic-wise growth of internet is yet to come, which will be dominated by 
distributed 3D gaming, high quality video-conferencing, virtual reality and 
many more application and services. These streaming multimedia 
applications need not only high speed data transferability, but also to be 
ensured Quality of Service (QoS). 
  

  On the other hand, telecom industry and data network industry are 
merging to the dream-trend “all-IP”. Moreover, mobile devices are 
spreading their versatility and usages in multi-tier information system in 
heterogeneous network platform to the telecom service provider and 
manufacturer. For example, Skype is on your mobile hand device. So wide 
deployment of wireless LAN, wireless MAN that enable omnipresent 
service provisioning to mobile user anywhere, any time, in any context.     

 
So there are lots of issues to the research people to solve the problem 

of immense growth of Internet traffic over wired network as well as wireless 
network. In particular, there are two issues concerning IP packets 
forwarding [5]: 

 
• routing- determining the path a packet travels on from 
source to destination, and 

• flow control- how a packet is forwarded (or stored), 
primarily with respect to universal time, along with the 
selected destination path. 

 
 Timing and flow control of IP packet over the Internet are important and 
more critical issue especially when IP packet is forwarded (or stored) 
between wired and wireless environment back and forth primarily with 
respect to time, along with the selected path. It is already realized, 
implemented and experimented that, to use global common time 

reference (CTR) derived from GPS (global positioning system) to control 
flow of IP packets and forwarding them over wired network is more 
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beneficial than traditional ‘only’ destination address based forwarding 
[1],[2],[3]. UTC-based (Universal Coordinated Time) pipeline 

forwarding [4] for IP packet scheduling, flow control is particularly 
suitable for stream application, since it: 

  
• guarantees a maximum per-hop queuing delay below one ms, 
independent of the flow rate and the network load, also in 
bandwidth mismatch points [4]; 

• is already  realized and implemented  efficient packet switch 
architecture that increases the scalability of switches and 
eliminates the electronic switching bottleneck [2]. 

• guarantees Quality of service (deterministic delay and jitter, no 
loss) for (UDP-based) constant bit rate (CBR) and variable bit 
rate (VBR) streaming applications — as needed, while 
preserving the TCP-based “best-effort” traffic(compatible with 
existing application) [1], 

 
In general, we called this network as time-driven network. Maximum benefit 
can be achieved form UTC-based pipeline forwarding, if it is 
deployed in the end-to-end user basis. Due to enormous growth of wireless 
LAN, the number of mobile end users is growing exponentially. Moreover, 
UTC with pipeline forwarding can solve the bandwidth mismatch problem 
between high capacity core network optical/ethernet and low speed 
wireless network, which is a link bottleneck problem. Therefore it 

should be worth highlighting to take advantage from time-driven pipeline 

forwarding to wireless network for IP packet forwarding and experiment 
the performance. Figure 1.1 shows the general overview of architecture for  
deploying time driven network with wireless extension.  
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Figure 1.1: Architecture for deploying wireless extension of Time 
Driven Switching (TDS) network.  

 
All switches, a packet forwarder, in time-driven network require UTC time 
directly from GPS. So it would be simpler solution to use a GPS receiver in 
an access point in wireless network (802.11, Infrastructure). Unfortunately, 
that will be expensive in comparison with current market value of AP.    

.This thesis work endeavors to find an optimal, cost-effective solution 
for wireless extension of time-driven network, implement the idea and divulge 
the experimental result. This work presents a kernel based prototype solution 
of synchronous scheduler for 802.11 network for an access network interface 
to time-driven network. It has been implemented directly in kernel space of 
Linux operating system that manages network layer and partially MAC layer 
of an Access Point.  



 4 

 
The report is organized such a way that, next chapter describes 

background of the project, i.e. basics of underlying technology time-

driven switching network and existing timing principle of wireless 
network (IEEE802.11), chapter three views theoretical idea of proposed 
approaches, chapter four provides details of prototypal implementation, 
chapter five evaluates the performance of current implementation followed 
by (in chapter six) a critics- the difficulty we faced, how far this work meet 
the goal and what to do next.     
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Chapter Two:  
 

Background 
 

 
 

This thesis work is based on an innovative concept to use ‘time’ to 
forward packet with existing network architecture. So it would be helpful to 
understand the basic principal of the underlying technology. This chapter 
also gives a sufficient background to understand following chapters. 
Experienced reader may safely skip some sections.  
 

2.1  Underlying Principle of Time-Driven Network 
 
  Internet traffic can be synchronized, minimum delay bounded, 
congestion free by using UTC-based pipeline forwarding of IP 
packets. Underlying idea is following. 

   
2.1.1 Common time reference 

 
In time-driven networks all switches maintain a common time 

reference (CTR) typically aligned with UTC (coordinated 

universal time) [1] [2] [4]. The granularity of the CTR is refereed as 

time frame (TF) of predefined fixed duration (typically between 12.5 µs 
and 125 µs) and the TFs are used to schedule packet forwarding from all 
sources throughout the network. Note that different links can have different 
TF duration (e.g., 12.5 µs for high capacity links and 125 µs for low 
capacity ones), for example, for forwarding to wireless link it can be used 
longer TF. Packets are not transmitted in a specific time, but rather within 
this predefined TF. Thus, this method is called pseudoisochronous 
packet switching. 

 
 

 



 6 

   
Figure 2.1: Definition of the common time reference [4]. 

 
 
The CTR is organized in the following manner: k TFs are grouped into a 
time cycle(TC) and l contiguous TCs are grouped together into a super 
cycle. A typical duration of a super cycle is one UTC second, as shown in 
Figure 2.1 (for Tf  = 125 µs), with k = 100 and l = 80. 
 

  The underlying principle of forwarding packet using CTR derived from 
the idea pipeline forwarding, used in computing, manufacturing, which is 
called UTC-based pipeline forwarding. In UTC-based pipeline forwarding, 
all switches, getting CTR from GPS, is forwarding packet utilizing TFs in a 
sequential, synchronized and increasing manner of TFs. Two 
implementations of the pipeline forwarding were proposed: Time-Driven 
Switching (TDS) and Time-Driven Priority (TDP) in [1] [2] 

 

 
 Figure 2.2: UTC-based pipe line forwarding [2] 
 
Time-driven switching (TDS) was proposed to realize sublambda or 
fractional lambda switching (FλS) in highly scalable dynamic, high speed 
(optical) backbone networking with minimal optical buffer. In TDS all 
packets in the same TF are switched in the same way.  

 

 

2.1.2 Packet forwarding with Time-Driven Priority  
 

Wireless extension of time-driven network, at the edge of the network, 
requires flexibility, e.g. conventional IP destination based routing. Time-

driven priority (TDP) is a synchronous packet scheduling technique 
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that implements UTC-based pipeline forwarding and can be combined with 
conventional IP routing [2][4].  

 
Packets are forwarded along TDP switches one hop every TF, as 

shown in Figure 2.3, for example a video frame. This figure shows very 
particular case. General idea is following: 

 

 
Figure 2.3: IP packet forwarding with TDP in the case of 
constant delay forwarding [1] 

 
During each TF, one or more packets can be transmitted; for example, 

if  Tf = 125 µs and the link capacity is 1Gb/s, about 300 ATM cells can be 
transmitted in every TF. If all packets that must be sent during TF i by a 
node are in the correct output port of that node before the beginning of that 
TF, and the delay between an output port of one node and the output port 
of the next node is a constant integer multiple of Tf,, referred as 
forwarding delay, the traffic in the network is said to be TDP paced 

or shaped and these two conditions are the main points that allow TDP to 
control the delay experienced by the packets in the network.  

 
It is easy to understand that a resource reservation protocol is needed 

by this queuing algorithm to keep these conditions true. Reserving resources 
for a connection requires solving a scheduling problem to find a feasible 
sequence of TFs, called schedule, on links on the route from source to 
destination. TDP needs the establishment of virtual circuits over the network, 
but as well as where sending a packet of a particular flow, TDP switches 
must know when sending it. There are three different forwarding schemes to 
choose when sending an incoming packet (k is the number of TFs in a TC): 

 
• immediate forwarding: packets arriving at an output port in TF 

i must be sent out in TF (i+1) mod k; 
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• 2-frame choice: packets arriving at an output port in TF i can 
be sent out either in TF (i+1) mod k or in TF (i+2) mod k, but the 
choice must be the same for all the next packets of the same flow 
that will arrive at this output port in TF i in the next TC; 

• arbitrary-frame choice: packets arriving at an output port in 
TF i can be sent out in any of the TFs (i+1) mod k to (i+k) mod k, 
but the choice must be the same for all the next packets of the 
same flow that will arrive at this output port in TF i in the next TC. 

 

 
  

Figure 2.4: Packet forwarding scheme, immediate, non-immediate and 
arbitrary forwarding [2].  

 
It would be, therefore, clear the main implication of TDP forwarding: 

the number of TFs it takes for a cell to be forwarded from one node to the 
next node is predefined in a deterministic manner and, in order to do it, the 
forwarding schedule of a given connection must be determined during set-
up and must be kept fixed for the connection duration. TDP forwarding with 
the proper resource reservation therefore provides QoS guarantees in 
terms of bandwidth, constant bound on delay, jitter of one TF (because 
packets could be transmitted in a period of time that goes from the 
beginning to the end of a TF) and no loss due to congestion for real-time 
traffic. In the same time a best-effort strategy is possible: best-effort 
packets can be transmitted anyway with lower priority during any unused 
part of any TF. Furthermore, large best-effort IP packets can be sent during 
multiple TFs in which case the packet will be fragmented by a time-driven 
nondestructive preemptive priority.  

 

2.2 TDP Interface of Time-Driven Wireless Network 
 

Figure 2.5 shows end-to-end prototypal setup of a typical time-driven 
network with wireless extension. All switches in the network are getting 
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UTC time using attached GPS receiver. However, in wireless extension, AP 
doesn’t have any GPS receiver due to non-feasibility of market value of AP. 
But we believe that, it is certainly still possible to make wireless network 
(802.11) time-driven and implement TDP packet scheduling if we consider 
TDP router as timing master of wireless network.  AP which is directly 
connected with TDP router, eventually distributes the timing information 
among the associated wireless client.  We referred the AP that performs 
TDP scheduled packet forwarding as TDP Access Point (TDP AP).  

 

 
 
Figure 2.5:  End-to-end prototypal test bed setup with time-driven 
wireless extension 
    
A prototypal implementation of a Time-Driven Priority (TDP) router has 

already been realized for shaping packet forwarding inside the time-driven 
network [23] and integrated with TDS optical backbone. It experimented the 
performance in [1]. TDP router is realized using a personal computer with 
FreeBSD operating system. Details of hardware configuration can be found 
in table 4.1. Although a non-real time architecture such as a PC is used to 
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implement TDP scheduling, it already experimented that, TDP router with 
SVP interface can provide deterministic QoS over a packet switching 
network, with a bounded end-to-end delay and jitter. Furthermore, it also 
minimizes the buffering requirements inside networks switches, while 
ensuring no packet loss due to congestion. 

TDP router is to be considered as timing distributor of the Time-

Driven Wireless Network (TDWN), should send a special packet 

called delimiter aligned with UTC time to the TDWN at pre-defined time 
interval. Delimiter may either  

(i) contain timing information, e.g. as timestamp value equals to 
the time when delimiter packet start to send output interface 
buffer of TDP router or  

(ii)  be empty body frame as timing indicator that will represent as 
TDP timer within AP.  

 
All APs connected with TDP router ‘simply’ accept the timing 

information of delimiter and adjust (synchronize) its own time or consider as 
time to forward timing value to all associated wireless client. Delimiter may 
be implemented as either: 

i) a special control/management frame, or  
ii) TDP shaped ordinary UDP packet since delimiter doesn’t need any 

acknowledgement.     
 
In the current implementation of TDP router, former method is taken 

on, i.e. TDP will send empty bodied delimiter as an ordinary TDP 

shaped UDP packet at a pre-defined interval called delimiter 

interval. So TDP AP simply and safely accept the delimiter as timing 
indication to adjust its own timer by measuring drift or just forward timing 
information to all associated. However, it is important to understand that, 
since delimiter doesn’t contain any timing value, TDP AP can not just adopt 
the time from the received delimiter packet. TDP classifier categorizes 
delimiter by using Differentiated Services (DS) field [27] 

(previously known as type of service (TOS)) of IP header [23]. Four 
unallocated DS codepoints are used for identify TDP packets, but note that 
the DS codepoint xxxx11xx identifies a TDP packet, other bits that 
distinguish odd/even TFs and odd/even TCs. Therefore, it should be easy 
to distinguish delimiter packet by TDP AP. 

        

2.4  Time Synchronization of IEEE802.11 
 

This section reviews the state-of-art of timing synchronization of 
802.11 network. We limit our discussion in only infrastructure mode 
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as this is the initial stage to introduce time-driven priority to the wireless 
network.  

Like other wireless network, 802.11 depends on the distribution of 
time information to all stations which is used by the medium reservation 
mechanism and other purpose as well. A time synchronization 

function (TSF) keeps the timer for all stations, in addition to a local TSF 
timer for each station. The TSF timer (a modulus 264 counting, 8 byte) is 
based on a 1-MHz clock and increase in ‘ticks’ µs In infrastructure network, 
the Access Point (AP) will be timing master, responsible to transmit a 
special management frame called beacon periodically containing “now” in a 
timestamp (TSF timer). AP should set timestamp value in beacon frame so 
that, it is equal to the TSF time at the time when first bit of timestamp field 
hits the physical layer plus the transmission delay from its MAC-Physical 
interface to its physical interface with wireless medium [21]. This timing 
accuracy is so rigid that, 802.11 standard defines to maintain the 
synchronization of TSF timer with all stations in a BSS within 4 µs plus 
maximum propagation delay of physical layer.  

Every station associated with should simply accept the time received 
beacon frame sent by AP, If a station’s TSF timer different from received 
timestamp, should update its local timer, but they may add a small local 
offset time. The interval at which AP sends beacon frame is referred as 
beacon interval that measured in Time Unit (TU) which is equals to 
1024 µs. Beacon interval is also included in beacon frame.    
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 Chapter Three:  
 
 

Theory of Proposed Approaches 
 

 
 
 

This work is the very initial stage research- how to introduce UTC-
based pipeline packet forwarding concept in the wireless network and 
experiment the result. We have proposed two possible approaches to 
achieve the goal. Section 3.1 and 3.2 describes approaches in a more 
‘general’  way, however, it can be found more specific description in section 
3.3 for 802.11 network considering the implementation feasibility on the 
existing hardware.  

 

 
3.1 Open Loop Approach 
 

Most of wireless network depends on timing distribution since medium 
can be shared among the nodes on the basis of time. Moreover, one node 
of the network should act as timing master (as central coordinator point) or 
all node exchange timing information to each other. The node (for example, 
coordination point) that directly connected with TDP interface should act as 
timing distributor among the all nodes in the wireless network. We called 
the node connected with the TDP interface as TDP node. Each TDP node 
has its local timing function, e.g. its local clock. 

 
The main idea of open loop solution is the central coordinator (for 

example in 802.11, infrastructure, access point) of TDWN is designed such 
a way that,  internal clock is initialized and incremented with TDP timer 
remotely. Virtually, it is expected that, there will be no propagation delay to 
get timing  signal from TDP router, like an electrical signal.  

 

3.2 Close Loop Approach 
 
Idea of the close loop method is similar to the time adjustment 

process of a station in infrastructure mode of 802.11 network. In the 
case of OLA, a TDP node should adjust or align its own clock after 
receiving delimiter from TDP interface ‘if necessary’.   It important to 
define, when it is necessary to align own clock timer with TDP timer and 
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how TDP timer can be implement within TDP node. TDP timer can be 
implemented within TDP node by following ways depends on content of 
delimiter, for example: 

i) if delimiter contains TDP timing value TDP timer of TDP node will 
be added value of TDP timestamp with local offset of TDP AP, 
see figure 3.1 

ii) in the case of empty bodied delimiter, receiving a delimiter cause 
increment TDP timer one unit depends on local timer of TDP 
node incrementing in which unit and delimiter is receiving at 
which interval. 

 
 Now it should explain when it necessary to make alignment. Since in 
the TDP node there will be two timer, one its local clock timer, another is 
TDP timer. It is important to point out that, the TDP timer represent UTC 
time in the TDP getting via delimiter. The purpose of close loop method is 
to synchronize between two timers. There should be drift between two 
timers which is measured at each delimiter arrival time. It may be 
problematic and time consuming to make an alignment. Moreover, it is 
still possible to implement TDP traffic scheduling drift between two timers 
don’t cross a certain time. We defined this upper limit of the drift as 
drift threshold. Hence when the amount of drift is just crossed drift 
threshold.  
 
 Close loop method is not ideally time-driven as this method lives 
always with a small drift. However, this drift never be greater than drift 
threshold. That’s why this method may be referred as pseudo time-
driven method.  
  

3.3 Modification Needed by Time Driven Wireless 
Network (TDWN) 
 
If it is possible to send timing information from TDP router to TDP AP 

using lower layered frame exchanging, more timing accuracy can be 
achieved. In the current implementation of TDP router, experimented to 
send timing information using an ordinary data packet, UDP packet, 
which goes into the inherited upper layer processing and adds some 
software latency. However, the initial research of TDWN, for experimental 
purpose indeed, we are interested to describes the both approaches in 
consider with existing network architecture and network device that can 
enable to implement the solutions to make wireless network time-driven. 
As the research on TDWN is very initial stage, we only consider 802.11 
network (infrastructure mode)    
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3.3.1 For Open Loop Approach 
 

We have reviewed (section 2.4) the state-of-the-art time 
synchronization of IEEE802.11 (infrastructure) wireless network that 
reveals AP maintains time synchronization functionality (TSF) with its 
associated station by sending a beacon frame (special management 
frame) periodically. To implement OLA in 802.11, it is necessary to 
control sending beacon frame using TDP timer remotely instead of TSF 
timer. So TDP AP should send beacon frame as soon as it gets the 
delimiter. Virtually difference between these two times, when delimiter 
has received by the TDP AP and time when beacon frame start to send, 
should be (tends to) zero. AP (WLAN chipset) suppose to set timestamp 
value at the time when first bit of beacon frame hits the physical layer of 
the device to transmit to the air. On the other hand, stations simply adjust 
it own local TSF time with timestamp value received from beacon. Hence, 
stations suppose to get the network time ‘perfectly’  aligned with UTC 
time. But practically it is not possible to keep the time difference between 
delimiter receiving time and start to send beacon frame to (tends to) zero. 
It may be useful to add some offset referred as local offset  
determined by TDP AP  This procedure can be useful only in case if 
delimiter contains timing value when start sending the delimiter packet by 
TDP router.        

 

   
Figure 3.1: local offset adding    
 
Although it is not possible to get device specification of WLAN 

chipset from respective vendor, but what we have learned from the 
experiment and open source community that, most of the chipset control 
(by firmware) time-critical MAC functionality like beacon transmission, 
since 802.11 standard stressed to maintain timing accuracy to sending 
beacon frame within 4 µs plus propagation delay of MAC-Physical layer 
interface [21]. This is certainly hard to maintain by device driver software. 
Most of the WLAN device contain different hardware transmission queue 
for different kind of traffic. Generally for beacon frame, AP also may use a 
special queue only for beacon. So it important to set chipset to transmit 
beacon at ‘exact’ time if it is already queued into the beacon queue.  
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3.3.2  For Close Loop Approach 
 

It is easy to implement CLA on the exiting hardware that’s design 
was followed 802.11 standard. In the this method we are trying to align TSF 
timer with TDP timer but device is still controlling to start sending beacon 
frame. TSF timer of the device is increasing every µs. that implies, 
granularity of TSF timer is µs. If we configure TDP router with delimiter 
interval is (e.g.) 1 ms, arriving event of every delimiter causes 1000µs 
increment of TDP timer. At each beacon frame transmission time, TDP AP 
needs to measure the drift between TSF timer and TDP timer  when drift is 
greater than drift threshold, according to the method, an alignment of TSF 
timer with TDP timer is needed.  

It is not possible to reduce or increase time value of chipset clock, 
but alignment can be possible if we can shift ahead or backward beacon 
transmission equal to drift threshold then alignment will be success. 

  
We have called close loop solution as pseudo time-driven method, as 

this method is not ideally time-driven with TDP timer. Once an alignment 
happened, sending beacon frame ‘aligned’ with TDP timer with some µs 
before or after because of drift. However, this difference will never cross 
drift threshold. This phenomenon    was described in figure 3.2 and 
3.3.  

 
 
Figure 3.2: Ideally TDP time and beacon frame sending time line  
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 Figure 3.3: Pseudo time-driven of CLA  
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Chapter Four:  
 
 

Implementation and Platform 
 

 
 

 
From the chapter two and three, we have studied sufficient 

theoretical description of the problem and possible and proposed solutions. 
This chapter describes the implementation details, the development 
platform, utility and environment in which the implement and experiments 
were carried out. 

 

4.1   Introduction  
 

Before going to details description of implementation, we are 
interested to focus on motivation and reason to choose the implementation 
environment. There was sufficient time had been spent in the study period 
of this thesis work to choose appropriate software platform and hardware to 
implement this project , since almost no vendor is kind enough to open 
source community. We needed to consider the availability, chipset vendor 
specification and financial support that project can provide and some trade 
off between several alternatives. 
We have studied following alternatives: 

 
a. OpenWrt:       
 
OpenWrt [7] is Linux system distribution for embedded device e.g. 

Wireless Router or Access Point that runs on Linux kernel. It provides fully 
writable filesystem, JFFS2, along with read-only (embedded in the 
firmware) known as SquashFS. This fully writable filesystem and package 
management facility enables developers and users application selection 
and configuration provided by vendor as well as allows you to customize 
and add functionality through the use of existing packages and   added 
packages to make suit any preferred application. OpenWrt, a framework, 
that allows developers to full customize and develop packages to enrich 
feature without building complete firmware around the wireless router or 
AP, those functionality was not envisioned by the vendors. 

 Initial stage of this project work, we have studied the feasibility of 
OpenWrt as the development platform to implement the idea as described 
in section 3.1 and 3.2 , by developing a package and ultimately cross 
compile for the target device (see chapter 6 ) Shortly it has been realized 
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that, implementation of the proposed solution requires to access to some 
lower level driver code of wireless LAN chipset which has vendor 
proprietary and licensing issue. But OpenWrt is certainly important and 
necessary platform for the future stage of this project work.       

  
b. HostAP:  

Host AP [8] is a Linux driver software as kernel module for wireless 
LAN cards based on Intersil’s PRISM®  ( 2, 2.5, 3 ) WiFi chipset [9]. This 
driver was developed basically to support master mode ( AP mode) without 
having any special  manufacturer provided firmware for wireless LAN card 
along with its normal station operation in BSS and also in IBSS. Host AP 
endows with functionalities in the host computer or embedded system 
required to initialize, configure, attach, de-attach Prism based cards to 
transmit and receive frames and to gather statistics. It also allows bridging 
through the regular Ethernet bridge driver of Linux kernel which might be 
useful for the implementation of this project work (see section 4.3.1). 
Moreover, it includes most of IEEE802.11 management and control 
functions such as authentication and de-authentication, association with re-
association, disassociation, power saving mode operation, frame buffering 
for power saving stations. Although, this driver code has still lack of 
development debugging, accessing hardware configuration records, I/O 
registers. This driver software has been designed and optimized such a 
way, it can be used as kernel module to customized Linux kernel for 
embedded system.      

According to the latest release notes [8], however, the firmware of 
Intersil’s PRISM® chipset for station (supplicant) takes care of time 

critical features of IEEE802.11 protocol stack, e.g. beacon frame 
sending, frame acknowledgement. As described in section 3.3, in both 
approaches, OLA and CLA, basically we need to control over sending 
beacon frame from AP in shifted or adjusted time. This “time critical” 
task is mostly built-in inside the firmware of the device. There fore,  
choosing Hos AP driver as the implementation framework of this project 
was in question.        

c. Bcm43xx: 

We already know that, implementation of this project will be 
sufficient modification and adding of code that control lower MAC layer for 
particular wireless LAN chipset. No vendor kind to open source 
community. bcm43xx is Linux kernel driver platform for Broadcom 

bcm43xx wireless chipset. This driver is based on reverse engineered 
specification of binary release of world leading wireless chipset provider, 
Broadcom after refusal to release any specs of their chips or any code of 
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their driver. Open source community reverse engineered Broadcom 
bcm43xx chipset family by analyzing disassembled code from other 
Braodcom driver , partially hand translated assembly to C followed by 
better understanding hardware and a creative MAC-On-Linux hacking to 
allow PCI proxying  [10].    

 Compare with leading WLAN chipset provider Atheros provided 
Madwifi, closed hardware access layer (HAL), bcm43xx    should be 
more useful platform to implement two solutions for this project. We would 
have chosen this platform, however, while I started to implement,  
bcm43xx was not succeeded to work with.   

 
 

4.2 Hardware 
 
The implementation environment consists of a testbed containing  

two TDP router as interface of TDP wired  and wireless network, TDP AP 
(with linux kernel). Table shows a quick view of test bed. ( see figure 5.4  
experimental setup) 
 

Name 
 

Work as 
 
Processor 

Main 
memory 

Operating 
system 
(kernel) 

 
TDP router 

Network interface of 
TDP network 

Intel
® 
Xeon(TM) 

2.8 GHz,  
4 processors in each 
router 

2 GB of 
RAM 

 
FreeBSD 5.3 

 
TDP AP 

Access Point of TDP 
wireless network  

Atheros WLAN 
chipset,  
Intel

®  
Pentium4 

(system µp)  

1 GB  
of RAM 

Linux 2.6.12 

 
Station 

Synchronous 
wireless client (as 
source or destination 
) associated TDP AP 

Intel® Pentium 4  
3.06 Ghz 
(notebook) 

1 GB  
of RAM 

Linux 2.6.12 

Fluke 
network 
packet 
analyzer 

Synchronous 
wireless client 

associated with TDP 
AP to capture and 
analyze frame 

Intel® Pentium M 
1,1 GHz  

504 MB 
of RAM 

 
Windows XP 

 
Table 4.1: Implementation and experimental hardware description  
 
4.2.1   Atheros WLAN Chipset as AP 
 

We have chosen madwifi (see section 4.3.2) driver as our 
implementation platform. This driver, lives in Linux kernel space, is for 
WLAN device based on Atheros WLAN chipset. In particular we have 
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selected Proxim WLAN card based on Atheros AR5212 chipset act as 
access point. So it would be good for the reader having some knowledge of 
chipset specification    

Atheros AR5212 chipset support 802.11a,b,g  is the second 
generation chipset derived from initial AR5210 which has been first full 
802.11a standard.  

Atheros WLAN chipset has multi-protocol MAC or baseband 
processor supports Radio-on-Chip (RoC) that can operate dual band 2.4/5 
GHz. The radio modem use OFDM in 5 GHz band in 8 different channels 
with throughput of up to 54Mb/s rates (depending of range).   

The Atheros chipset has some proprietary features, e.g. Atheros 
turbo G mode (super AG® mode) that allows to make twice of bit rate (say 
108 Mb/s) by using two channels in parallel. Downside is, it helps to 
increase sensitivity of interferences, certainly decreases number of 
channels and lead to incompatible 802.11a. Host interface of the chipset 
are MiniPCI, Cardbus ( 32 bit PCMCIA), PCI with direct DMA access. 

 

 
 

 
  Figure 4.1: Atheros 5002X chipset architecture with AR5212  [22] 

 
This chipset support wireless multimedia extension (WME), defined in 
IEEE802.11e standard, Quality of Service (QoS) enhancement that 
consider delay-sensitive application, voice over wireless IP by extended 
802.11 MAC layer [11]. It can manage additional hardware transmit (TX) 
queue for WME classified traffic, e.g. voice over wireless IP (VoWIP) 
classified traffic can be assigned high priority queue. In one of our 
experimental cases of OLA, we used a hardware TX queue of WME traffic 
to transmit beacon frame (see section 5.1).  
 
 
 
 



 21 

4.3 Software and Utility 
 
This section describes details of customization and added functionality 

to the driver software for WLAN chipset. Moreover, in the beginning, a 
details discussion of how delimiter packet traverses inside the kernel 
followed by a timing resolution of Linux kernel that has affected the result of 
our implementation.   

 
4.3.1 Traversing Delimiter in the Kernel: 
 

Two approaches have been proposed in section 3.3, to achieve the 
objective of this project. And in section 2.3, architecture of TDP router has 
been depicted. It has been clear that, delimiter, a UDP packet, will be act 
as indicator to send beacon frame from AP for OLA or to measure the drift 
between two timer, TDP timer and TSF timer .Since Linux is not real time 
operating system, moreover its timing resolution is low, so it is important to 
realize that, how much time is being spent to traverse delimiter inside 
kernel to be routed from Ethernet interface to PCMCIA interface.   To 
prepare this section, we have followed OSI layer (appendix A.1) sequence 
physical layer, MAC layer and then IP layer. 

 

 
 

Figure 4.2 : Abstract view of network packet processing by Linux Kernel 
 
 
4.3.1.1 Layer-1: Packet From NIC to the Network Buffer: 

 
Linux kernel supports various network interfaces, for example, 

Ethernet, 10/100baseT, gigabit Ethernet etc. In our implementation, 
Ethernet has been used. So lets limit this study in the case of Ethernet 
interface as receiver of delimiter packet from border interface router of time 
driven network. Typically, the on board memory of Ethernet divided as 
receiving buffer (Rx) and transmitting buffer (Tx). For instance, the 3c509B 
from 3Com Ethernet card has 8kB on board memory buffer divided any of 
combination of 4kB Rx, 4kB Tx  or  5kB Rx, 3kB Tx  or  6kB Rx, 2kB Tx 
[12]. 
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The packet is received into this on board memory buffer in FIFO basis. 
This structured is called rx-ring. After reception of a packet, hardware 
issues a hardware interrupt (irq) to make attention of cpu execution and 

an interrupt handler is invoked which has been registered during open() 

method when device attached with the kernel using net_device kernel 
interface.  The interruption mechanism will be disabling as long as irq will 
be acknowledged by the cpu. 

Linux kernel network buffer structure called sk_buff   declared in  

/Linux-src/include/linux/skbuff.h  is then allocated and then 
packet is copied into the kernel memory  that can be mapped to the Direct 
Memory Access (DMA) region, shared memory etc. Once packet copied to 
the sk_buff, it needs to be queued into the kernel network queue 

declared as softnet_data structure in /Linux-

src/include/linux/netdevice.h. this structure is unique for all 
interfaces for single cpu machine. Packets enter and leave to and from this 
queue in FIFO basis.      

 
We should describe briefly sk_buff an important control data 

structure with block of attached memory, which has been used frequently in 
this implementation. This control structure is used basically to contain 
frame content, has several methods to maintain doubly linked list of 
sk_buff  e.g. skb_put(), skb_append(), kfree_skb() etc.   

 
Once packet is queued, now it’s time to handle by kernel. So interrupt 

handler of interfaces driver leaves a warning to kernel to dequeue packet at 
its convenient time. Some times this mechanism is referred as software 
interrupt.     

      
4.3.1.2 Layer-2: From Network Buffer to Appropriate Protocol 

Handler 
 

Layer 2 is further divided into logical link layer (LLC) and MAC layer 
by IEEE, that makes more complicated.  Software interrupt is generally 
scheduled for execution to dequeue the frame from network buffer to 
appropriate protocol handler. Protocol type is supposed to identify by the 
device driver followed by finding encapsulation type which gives 
information how extract layer 2 header and eventually set sk_buff-

>protocol   . Once protocol handler is determined, frame should go layer 
3. Details description is out of the scope of this project work.    

 
4.3.1.3 IP Layer: Packet Forwarding 
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We have called this section as IP layer since we limit our study only 
for IP packet that should be forwarded through the Linux kernel ( layer 3 ) 
followed by some kernel filtering. In one of our experiments, it was taking 
considerable time for delimiter packet to be routed from Ethernet interface 
to PCMCIA interface. The destination of the delimiter was a station 
associated with access point in that PCMCIA interface. (see section 5.1). 
We tried to analyze the reason for our implementation in this section and 
some suggestion to avoid the delay time to traverse the delimiter will be 
depicted in chapter 6. Implementation was beyond of this project work.  

The packet, to be routed or dropped, enter layer 3 processing through 
the method called ip_rcv() implemented in net/ipv4/ip_input.c,  
then packet has to enter any hooks of Linux netfiler [13].  Netfilter is a 
framework, started from Linux kernel 2.4.X, that enables packet (statefull or 
stateless) filtering, network address (or port) translation (NAT, or NAPT)   
packet mangling or manipulation, beyond the normal Berkeley socket 
interface. Netfilter, the successor of ipchains and ipfwadm from 
previous kernel, is a set of hooks associated with kernel modules to 
register callback functions those are called back for each packet that is 
going to forward through respective hook. 

iptables, we are more familiar with, is a userspace command line 
program helps to configure kernel netfiltering rule set. It is basically packet 
selection system built over netfilter framework.   

  All supported protocol of netfilter defines some ‘hooks’, e.g. IPv4 
defines five hooks. The respective protocol stack will call the netfilter 
framework with the packet to be traversed and hook number [14]. Netfilter 
consist of sequence of hooks with some entry points for a particular 
protocol stack. For instance, abstract diagram of IPv4 packet traversal 
looks like: 

 
  
 
 
 
 
 

 
Figure 4.3:  IP packet traversing diagram through netfilter framework 
[14].   
  

Packets are passed to the first hook of netfilter framework referred as 
NF_IP_PRE_ROUTING followed by some introductory check, e.g. IP 
checksum, truncated or not, receive promiscuous etc.  
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 Packer enter, next step, routing code where routing decision will take 
place, i.e. the packets are destined another interface or get into processing 
of local host or getting dropped because of non-routable.   

    
If the destination address is the local host itself, packet passed to the 

hook called NF_IP_LOCAL_IN followed by passing to the process of some 
userspace. On the other hand, if the packet is destined to the other 
interface, it is being passed to the NF_IP_FORWARD hook. This would be 
the case of our implementation and giving more description in the next 
paragraph. The packet may pass to the final hook of netfilter, 
NF_IP_POST_ROUTING, before going to be handled by the Linux traffic 
control and then driver module of another interface (see next section).  

In the case of generating packet locally, the hook, 
NF_IP_LOCAL_OUT  takes care of them. You can realize from the figure 

4.3 , after passing local_out  hook the packet has to passed into routing 
code again since it needs to check source destination address and some IP 
options. In some case, e.g. NAT coding, routing may need to be changed 
by altering skb->dst field.   

Any kernel module can register itself to listen to any of these hooks. 
When any particular hook is called from core networking code of kernel, the 
module registered with the hook at some points is free to mangle the 
packet and responsible take action of any of the following five alternatives 
[14]: 

• NF_ACCEPT: continue to forward as normal.  
• NF_DROP: drop the packet; don't continue traversal.  
• NF_STOLEN: someone have taken over the packet; don’t 

continue to forward.  
• NF_QUEUE: queue the packet for handling the process of 

userspace.  
• NF_REPEAT: call this hook again.  

Routing decision needs a quite expensive look up operation into a 
complex structure refer as Forwarding Information Base (FIB) tables. 
The purpose of this look up is to find out an entry of route associated with the 
destination IP address. A next hop, where packet will be forwarded, will be 
associated with each of these route entry. Since this look up into the quite 
complex data structure, FIB tables, is reasonably expensive operation, a 
route cache is also used to make it faster. A hash function combination of 
source address, destination address, incoming device and TOS filed, is used 
to look up to the cache system.   
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Figure 4.4: Typical view of FIB (forwarding information base)  [16] 

 
When the address of next hop is found, skb->dst variable is set with 

this value. Some works, however, to fulfill the requirement of IP routing [15] 
has to be completed before sending packet to the outgoing interface: 

• TTL field of IP header suppose to decrement by one 
• Checking the maximum transmit unit (MTU) of outgoing 
interface. If MTU is smaller than the packet size, packet 
should be fragmented otherwise let that be just transmitted.   

• Depending on the requirement of IP routing ICMP message 
may generated 

• If the hardware address of the interface of next hop is not 
known, an ARP packet has to be issued to get the hardware 
address.  

 
In our test bed setup (see figure 5.4.), the destination address of the 

delimiter is one mobile station associated with the AP. So certainly delimiter 
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suppose to be forwarded inside Linux kernel. From the above explanation, 
delimiter has to be passed to first hook, NF_IP_PRE_ROUTING, of netfilter 
framework followed by routing stack decision to forward to the Access Point 
interface, PCMCIA. So hook NF_IP_FORWARD will next take care of. Since 
delimiter packet is being forwarded at a very short interval (few 
milliseconds), route entry may be in the cache system of FIB tables. 

     
4.3.1.4 Layer 2 : Packet Queuing into the Outgoing Interface 

 
Layer 3 packet forwarding was involved to find out the output 

interface, route entry of next hop, encapsulation etc. Once al of these 
works have been done, packet has to be queued for the outgoing interface. 
At this stage, Linux traffic control, complex queuing discipline, bandwidth 
shaping come to play. After releasing from the traffic control, device driver 
will take care of packet to transmit with the device to next network. 
Sometime device driver does additional vendor specific traffic classification, 
provide quality of service (QoS) oriented hardware queue of respective 
device for emitting the packet.   

Every network device has its own queuing discipline and its own way 
to treat on the enqueued packet for that device interface. Queuing 
discipline may use filtering   to classify among the different classes.  For 
instance, this task includes to giving priority to the packets of one classes 
over other classes. High priority traffic may use token bucket filtering (TBF) 
which ensures data rate at most 5 Mbps, for example. On the other hand 
low-priority traffic is being queued by, say, FIFO discipline. 

 
 Queuing discipline provides following set of methods (related one 

mentioned here only) declared in struct Qdisc_ops  in     
source/include/net/sch_generic.h    

 

• enqueu – enqueues a packet with classified queuing discipline. 

•  dequeue – returns the next packet qualified for transmitting 

•  requeue – put a packet back into the queue after dequeuing 
for some reasons. 



 27 

 
  
 Figure 4.5: Flow of function calling to enqueue, dequeue and 

sending packets to device driver in Linux kernel    
  

 
Figure 4.5 shows the flow of procedure call, how a eligible packet comes 
into hand of device (Access Point) driver code, our implementation platform 
can start processing with delimiter. Here details of called function invoked 
by queue discipline itself for classification etc. are not shown for make it 
simple. Detail study is beyond of this project work. When a packet is going 
to be enqueued into the device interface queue, enqueue function  of 

dev_queue_xmit() in  /net/core/dev.c  is invoked. Here it should be 
mentioned that, device’s queue discipline is referenced   by a pointer to the 
corresponding struct Qdisc for all of its functions. qdisc_wakeup() 

immediately call function named qdisc_restart(), which is the 
important function responsible to poll queuing discipline. 
qdisc_restart() is also responsible to take release packet from 

queuing discipline of the device. On success, it invokes net_device’s 
hard_start_xmit() declared in /include/linux/netdevice.h. 
This is the function pointer which is unique for every network device, 
responsible to hand over the packet for that net device’s code to transmit. 
So for every packet suppose to transmit via that device, referenced function 
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of that device driver to hard_start_xmit() function pointer will be 
called. In our implementation, we have pointed to our own transmit 
function, ath_xmit() by replacing its driver own xmit function 

ieee80211_hardstart(). The details of next implementation phase will 
be described in section 4.3.2 

 
4.3.1.5 Packet Queuing and Timing Resolution 

 
The queuing policy and discipline may not allow to send packet 

instantly as soon they are enqueued [13].  A timer (see figure 4.5) may 
need to configure to schedule the transmission of the packet. So packet 
may be left in the queue for certain time. Linux has very low timing 
resolution, timing is obtained by sampling internal clock tick unit (the 
constant HZ) which is only operating at 100 HZ ( 1 tick = 10 ms ) for Intel 
based architecture [17]. This low timing resolution of Linux may be the 
reason to impose restriction to configure parameter of scheduler for 
departure of packet. For instance, a packet in token bucket filtering (TBF) 
queue may need to wait 1/HZ seconds. Since, as describe earlier, 1 tick = 
1/HZ seconds which equivalent to 10 ms for Intel based architecture, 1 ms 
for alpha. In TBF queuing discipline, say B bytes is possible to send by this 
buckets in any time interval (1 clock tick unit). So maximum bandwidth can 
be achieved  B*HZ .  It, however, of course, is possible to make wake up 
queuing asynchronously by entering other packets into the system, which 
lead to positive timing effect.    
 
4.3.1.6 Shorewall 

 
To enable IP routing inside Linux kernel, to make traverse delimiter 

packet from Ethernet interface (eth0) to wireless interface (wifi0), we have 
used a user space tool for configuring netfilter’s hook 

NF_IP_FORWARD called shorewall  [26] after the motivation of users of 
implementation platform madwifi. It gives possibility to describe the 
firewall/gateway requirements using entries in a set of configuration files. 
shorewall studies those files and with the help of the iptables utility 
configures Netfilter to match the requirements. Shorewall is not a daemon. 
Once shorewall has configured Netfilter, its job is complete. After that, 

there is no shorewall code running although the /sbin/shorewall 
program can be used at any time to monitor the Netfilter firewall. Moreover, 
shorewall does not use Netfilter's ipchains compatibility mode and can 
thus take advantage of Netfilter's connection state tracking capabilities.  

The shorewall utility has been used in our case for configuration 
route between Ethernet and Wireless interfaces, previously configured and 
up, in particular the Two-interface Shorewall configuration scheme (the 
usage of specific configuration files depend on the network design) was 
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used. The content of each reconfigured file (Interfaces, Policy, and Zones) 
represented in appendix A.2. 

Shorewall views the network where it is running as being 
composed of a set of ZONES, moreover it recognizes the firewall system 
as own zone when the specific /etc/shorewall/zones file is 
processed. We consider the Wireless as one zone, and the Ethernet 
network as another zone.  

In order to make route between two boundaries the association 
between Linux INTERFACES and ZONES is accomplished in 
/etc/shorewall/interfaces file. There is another zone that is not put 
in this zones file, called the "firewall zone" or "$FW". This is already defined 
in /etc/shorewall.conf. By default any traffic originating from the 
machine (fw) to the Wireless and to the local Ethernet network is accepted. 
For $FW and all the other zones defined beforehand the corresponding 
POLICY for interconnections can be configured in 
/etc/shorewall/policy file. The POLICY field can be build up from a 
number of actions ("ACCEPT", "DROP", "REJECT", "CONTINUE" or 
"NONE") in order to regulate traffic patterns. See appendix A.2 
configuration file of shorewall.  

 
In additional to firewall rulesets, the /proc filesystem offers some 

significant enhancements to network security settings. The pseudo file (It 
does not contain “real'' files but rather runtime system information) structure 
within proc provides a file-system like interface to the kernel. This allows 
applications and users to fetch information from and set values in the 
kernel using normal file-system I/O operation. In our case to regulate IP 
forwarding inside Linux kernel some modifications in   
/proc/sys/net/ipv4 directory should be made (in particular insert “1” in  

/proc/sys/net/ipv4/ip_forward file). 
 

4.3.2 Linux Kernel Driver of Atheros WLAN Chipset 
 

It has been realized that, we need to customize and add time-
driven functionality to WLAN chipset driver code to implement the idea. No 
vendor (e.g. leading WLAN chipset provider Atheros, Broadcom, Texas 
Instrument) is kind enough to open source community. This phenomena 
makes complicated the implementation of this project.  However, we have 
chosen madwifi [19], a Linux kernel device driver for wireless LAN chipset 
from Atheros Communications [20]. This is partially open source project 
supported by the vendor Atheros itself. This section, gives the details of 
implementation, is organized by starting a brief of network device driver, 
then details of time synchronization of madwifi and lastly specific 
description of both approaches, OLA and CLA.   
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4.3.2.1 Basics of Network Device Driver for Linux Kernel 
 

This section gives a brief introduction of network device driver for 
Linux kernel. This will only describe the related part that may help to 
understand our implementation. The experienced reader, however, can 
safely skip this section. 

 Linux kernel is inherently considered as the efficient and secure for 
networking. Modularity, granularity of recent kernel provides concise well-
organized, and efficient and solely higher layer protocol independent coding 
interface that enable programmer to develop network device driver as kernel 
module, instead of part of monolithic kernel.  As a kernel module, driver of 
WLAN chipset, request resources needed for the operations of the device 
such as I/O port, interrupt (IRQ) number etc. Kernel maintains a global list of 
network devices those have been detected.  Each interface defined by struct 
net_device, declared in  /include/linux/netdevice.h.  Whenever a 

device driver register itself, using register_netdevice(), it initializes the 

hardware and allocate the resources it needs by filling up net_device’s 
items. Following methods are common for each network device interface in 
init_module() when a driver as kernel module is loaded into the kernel 
[18].     

o open() – this opens the interface identifying as name filed, 
whenever ifconfig  makes it up. This method also 
responsible to allocate system resources it needs (I/O port, 
IRQ, bus number, DMA, start queuing etc.) 

o stop() – it closes the interface, release the resources, when 
ifconfig makes it  down 

o hard_start_xmit() – whenever kernel release a packet for 
transmission, this method is invoked to send packet by that 
device. Packet should contain in sk_buff (socket buffer) skb. 

o void *priv -   private data for the driver. This is the base of all 
data structure used for the driver development.  

 
 

4.3.2.2 Introduction of Implementation Platform, MadWifi 
 

Madwifi is partially open source project supported by the vendor 
Atheros itself. We called it ‘partially’ open source since some part of 
this driver, provided by the vendor, is closed source referred  as hardware 
access layer (HAL), comes available only as compiled binary for couple of 
architectures. We will see soon why it is closed source according to vendor.  
 MadWifi, Multiband Atheros Driver for Wireless Fidelity, a framework, 
provides development environment as Linux kernel (started from 2.4.x ) 
device driver that your wireless card will appear as multipurpose network 
interface in your system. It support wireless extension kernel API that 
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allows to configure the device using common wireless tools, ifconfig, 

iwconfig. A rich supported operational modes such as station, i.e. 
managed mode, Access Point, i.e. master mode, ad-hoc mode i.e. IBSS 
mode, WDS (wireless distributed system) to create large wireless network  
by linking with neighbor AP, monitor mode etc.  made madwifi  platform 
complex, not easily understandable and has been cumulated lots of code.          

The whole madwifi code is consists of several parts. I just described 
here as some modules. The device driver, as kernel module named 
ath_pci consists from modules ath, ath_hal, net80211 and 
ath_rate. 

• net80211 or ieee80211 stack – this part is originally hacked 
from FreeBSD which contains generic IEEE802.11 
functionality. For BSDs, this stack supports numerous WLAN 
devices. It, however, has been imported and customized only 
for Atheros wireless LAN chipsets. This module implements lost 
of called back which can be called by ath_hal, ath module 
provided that, it has to be exported by EXPORT_SYMBOL. 
net80211 module also consists of WLAN authentication, 
cryptographical part.   

• ath module – this module defines Atheros WLAN controller 
specific callbacks for net80211 module access to the hardware 
through HAL module. It contains time critical part of 802.11 
management, e.g. beacon management, device’s ioctl, 
configure and setup transmit (TX) and receive (RX) queue, PCI 
bus controlling connected with the CPU etc.  

• hal module – Hardware Access Layer, hal module is 
responsible to access to hardware. This closed source 
component, basically maintained by the vendor, Atheros, itself, 
can be thought something like firmware of card with the only 
exception is, its not stored into the card, instead consider as 
kernel module. Commercial point is, it’s required less flash 
memory on the board which can reduce market value of device. 
By definition, hal is not exactly firmware, since firmware is 
hardwared program executable on board microcontroller. 
According to the argument of vendor, due to chipset’s versatility 
to tune wide range of frequencies, even in unlicensed bands 
(non-ISM), to enforce limit on transmit power etc and for some 
legal issue, Atheros keeps the code of hal module as closed 
source. Moreover, there is no documentation for hal exception 
a public interfaces in hal/ah.h. Soon we will see this 
unavailability has made our implementation so hard (see 
chapter 6). 
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• ath_rate module - this module selects the appropriate 
algorithm for the best transmission rate. Among 802.11a, b, g, 
multiple bit rates, this module sets the device’s transmission 
when sending data packet. MadWifi includes three different 
algorithm to choose bit rate: a) onoe algorithm,  b) amrr 
algorithm,  c) SampleRate algorithm 

 
4.3.2.3 Architectural Overview of MadWifi 

 
In the last section (4.3.2.3), we have described all modules consist 

of madwifi. This section will shed some light on organization and design 
view of madwifi code followed by some important and related data structure 
to our implementation.    

I have customized and implemented two approaches (see section 
3.1, 3.2) using MadWifi (version 0-9.1, virtual AP, vap branch) on Linux 
kernel 2.6.12.  Madwifi has several modules, our customization was 
involved with basically ath  and wlan or net80211 module. ath module 
consists of the context of all hardware related operations, methods to 
access hardware (mostly in if_ath.c, C source file), PCI bus configure ( 

if_ath_pci.c), board configuration (if_ath_ahb.c), ioctl related definition 

etc. ath layer is used as callback that allows to call upper layer. i.e. 

802.11 layer, ath_rate selection layer, binary module of madwifi, HAL 
layer.            

Device’s private ( *priv ) data structure ath_softc that contains 
pointer of other concerned structures, e.g. ath_hal, ieee80211com, 

net_device, beacon xmit slot   (sc_bslot ) of ieee80211vap, beacon miss 
interrupt tasklet (sc_bmisstq) ,  beacon stuck interrupt tasklet (sc_bstucktq) 
of struct ATH_TQ_STRUCT as well as some member variable, e.g.  

- HAL queue number for outgoing beacon (sc_bhalq), 
- missed beacon transmission (sc_bmisscount)     
- buffer for beacon frame (ath_buffhead) 
- next slot for beacon xmit (sc_bnext),  etc. 
 

Hardware access layer (HAL) API defined in structure ath_hal in  

/hal/ah.h . To obtain a reference of ath_hal structure driver has to call 

ath_hal_attach(). All hardware-related operation must call back into 

the HAL through this interface, ath_hal, i.e. this structure contains pointer 
of all HAL functions. Driver specific node state defined in structure 
ath_node in /ath/if_athvar.h  Device’s buffer declared as structure 

ath_buf (in /ath/if_athvar.h) that contains physical address of buffer 

descriptor, sk_buff pointer of ath_buf  etc.  

In the net80211 module, 802.11 layer’s control state is split into a 
common portion. one- to –one map from a physical device to one or more 
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virtual APs (vap) those are bound to instance of structure ieee80211com  
. But each vap has corresponding kernel device entity. All traffic and control 
flows, issuing ioctls go through each device entity. Some important and 
more commonly used data structure are defined in net80211 module, for 
example, ieee80211vap, ieee80211com, ieee80211node etc. 

For the description of implementation and customization of madwifi 
driver code,  we define some terminology. For example: 
  HAL function – we already know, the chipset vendor provided 
a public interface ( /hal/ah.h ) of their closed source module ath_hal  
this interface file contains definition of all the functions prototype and HAL 
member variables. We refer these functions as HAL functions. Most of the 
cases, prefix of these functions ath_hal-, e.g. 

ath_hal_beaconinit().   
  beacon state – most of the beacon management functionality 
is time critical. So device has to configure (by driver coding) and set some 
beacon parameters and beacon timer. We defined these set of parameters, 
such as beacon timer, beacon timer, nextTBTT, beacon_miss_count, 
nextDTIM etc as beacon state. Per station beacon state is defined as 

struct BEACON_STATE in  hal/ah.h.       
 

Device’s Interrupt Handler: 
 

Every network device should have an interrupt handler routine 
registered in dev->irq  in struct net_device.  ath_intr() routine 

has been registered as interrupt handler of madwifi using request_irq()  

kernel method in  /ath/if_ath_pci.c Most of actual processing are 
deferred from this method. We need to understand interrupt handler 
carefully since software beacon alert (SWBA) interrupt important for this 
implementation. ath_intr() method invokes as soon as any interrupt 
occurred by device. First we need to figure out the reason(s) for the 
interrupt by calling the HAL function ath_hal_getisr(). For this 
implementation, we are only concern with possible cause of interrupt may 
be beacon alert time (SWBA) and beacon miss exceed (HAL_INT_BMISS 
).  Device notifies to driver to prepare beacon frame by occurring software 
beacon alert (SWBA) interrupt sufficiently before next beacon transmission 
time during the next TBTT since it needs some time to prepare, generate 
and update the dynamic content of beacon frame followed by putting into 
the beacon queue. So it might be difficult to meet the timing constraint 
under load, if SWBA interrupt is not occurred sufficiently before time to 
send next beacon. Other than these two kinds of interrupt, common 
interrupt are, frame receive (HAL_INT_RX), receive error 
(HAL_INT_RXEOL)to re-read link when RXE bit set etc. but study of these 
is beyond of this project.    
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4.3.2.4 Time Synchronization Functionality of MadWifi 
 

This section will describe specific implementation description and 
design architecture of beacon management functionality of madwifi as 
master mode, i.e. AP mode. We know (see section 2.3) access point is 
suppose to send beacon frame at exactly every beacon time interval with 
time accuracy of few micro-seconds.   

Missing to send few numbers of consecutive beacon frames is 
considered severe annoyance of the wireless network and may lead to 
collapse the whole network. Most of the part of this rigid time critical 
beacon management has been let to control by device’s firmware ( e.g 
hostAP [8] ) or device’s microcontroller to ensure this time accuracy. 

Wireless LAN chipset vendor, Atheros Communications Inc. provided 
a public interface of their closed source Linux kernel module ath_hal (in 

hal/ah.h) without any specific documentation (very few vendors are kind 
enough to open source community). Most of member variables and 
function is the part of struct ath_hal defined in  hal/ah.h. In our 
implementation some hal  functions are excessively used, for example, (it 
is not possible to give all of them. Only important one is here): 

   ath_hal_setupxtxdesc()- to set transmission queue(TX) 
descriptor. 

ath_hal_intrset()- to enable or disable interrupt firing 

ath_hal_beaconinit()- to initialize beacon state 

ath_hal_gettsf64()- to get current chipset TSF time in µs 
ath_hal_puttxbuf- to put frame in a hardware queue 

ath_hal_txstart- to enable any TX queue 
etc.. 

Beacon management functionality of madwifi driver can be described in two 
folded:  a) beacon state initialization    b) interrupt driven transmitting.   

 
a)  Beacon state initialization: 
 

  Initialization of beacon state has been done ath_beacon_config() 

function in ath/if_ath.c. This function has been called to start or restart 
beacons. This function, for an AP, set up the device to notify the driver  
time to prepare and issue next beacon frame, according code, it is referred 
as software beacon alert (SWBA). Lets explain step by step, the 

series of jobs done by this function ath_beacon_config(). 
Understanding this part is important for our implementation.  

� Take the beacon interval from net80211 module. In usual case, 
beacon interval is given when device is up (using the wireless tools 
iwconfig) and suppose to be kept internally in ic_lintval  variable of 
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ieee802com struct  defined in /net80211/ieee80211_var.h  

and also AND-ed with HAL_BEACON_PERIOD to ensure in correct 
margin value.  

� Since we are only interested to AP mode, nextTBTT will be 
equivalent to beacon interval and AP is supposed  to schedule a 
beacon frame as the next frame for transmission at each TBTT 
[21] 

� Enabling beacon timer and SWBA interrupt by OR-ing interrupt 
mask variable sc_imask ( member variable of *priv  data structure 
ath_softc in  /ath/if_athvar.h ) with HAL_INT_SWBA  
constant.  

� One of the major jobs of beacon state initialization is configure and 
setup a hardware device queue for particularly only beacon frame 
transmission. This have been done by implementing function 
ath_beaconq_config(). The responsibility of this function to 
get a hardware transmit (TX) queue dedicated for beacon using a 
HAL function ath_hal_gettxqueueprops(). In our 

implementation, device’s TX queue number 9 was beacon 

queue. The value of some TX queue parameters of 802.11 MAC, 
e.g. Inter Frame Space (IFS) duration, CWmin, CWmax are to be 
set in this function to always burst out beacon traffic. 

� A HAL beacon management function, ath_hal_beaconinit()  
is being invoked and passed the OR-ed value of beacon interval 
with constant  HAL_BEACON_RESET_TSF and 
HAL_BEACON_ENA successively to enable particular chipset’s 
register followed by beacon miss_count set to 0. Interrupt firing 
disabling and enabling again has been done by invoking hal 
function ath_hal_intrset with the variable sc_imask. 

      
So we understand how beacon state is initialized to set and configure 

the device to issue SWBA. Now we analyze, when this 
ath_beacon_config() function is to be invoked (see figure X).  Actually 
to start or restart, this function needs to invoked, i.e.  

� when device is up, init_module() of driver is run, it needs to 
start beacon. 

� when chip needs to reset followed by some fatal hardware error or 
FIFI RX queue over run or any problem.  

� when channel has been changed or set   
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Figure 4.6: Flow of function calling to start/restart beacon 
 

  ath_newstate() also invokes ath_beacon_alloc() function to 
allocate and setup beacon frame content. If any previous allocation for 
beacon exists, release the associated skb. The beacon frame buffer must 

be 32-bit aligned. mbuff() routine is supposed to return something with 
this alignment from ieee80211_beacon_alloc() method of net80211 

module. ath_beacon_alloc() basically allocates socket buffer 

(sk_buff) for beacon frame.    
 
b) Interrupt driven transmission of beacon frame: 

 

 From the previous section, interrupt handler, we already know, 
hardware issues time critical interrupt beacon alert time (SWBA) interrupt at 
sufficiently before the next TBTT. Interrupt occur before the nextTBTT 
since we need some time to prepare, generate, update some dynamic 
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content of beacon frame taking account into current state and finally after 
completion of generation of beacon frame we need to put into the beacon 
queue. We will see here, bit details of this! The series of tasks have to be 
done to prepare beacon frame and post generation task and a bit 
description of methods involve with this phase. It is important to note that, 
most of execution and processing of this section of code is common for 
both approaches of this project implementation.  

 
 When madwifi interrupt handler, ath_intr() realized the SWBA 
interrupt has occurred, so it is time to prepare beacon frame and this has 
been done by invoking ath_beacon_send() method. Figure X shows the 
flow function calling until completion of beacon generation process.  First 
task should be a routine check whether the previous beacon has released 
or not. If it is pending, so we miss to send one beacon frame which 
obviously is not good. If we miss consecutive a constant number of beacon 
so a situation  reffered as beacon stuck is occurred. We called this 
constant number of missed beacon as BEACON MISS THRESHOLD (say 
we set this value 5)   If beacon miss count is crossed this threshold we are 
in beacon stuck situation so it needs to reset the device otherwise, it will 
reduce performance of wireless network dramatically and associated 
stations will not understand the existence of network.  
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 Figure 4.7: execution flow of interrupt driven beacon transmission 
 

If we don’t find any pending beacon, we should move on. So it’s time to fill 
up the content of beacon frame for each virtual AP (vap, if more than one). 
This has been done by invoking function ath_beacon_generate() and 

return the pointer of complete beacon frame as ath_buf.  sk_buff has 
been used to link up with beacon buffer. However, the important job, 
updating dynamic content of beacon frame based on current state is being 
performed by callback function ieee80211_beacon_update()  of 

802.11 layer in net80211 module ( /net80211/ieee80211_beacon.c 
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). This method first checks whether channel changed by calling function 
ieee80211_doth_findchan()  and set the value. Most of the field’s 
value of beacon frame (see section 4.3.2.4.b ) is set by the function called 
ieee80211_beacon_init(). First field of beacon frame format, 
timestamp (64-bit long) is suppose to set by the hardware. The value of 
timestamp field will be the time (e.g. in milliseconds) when exactly first bit of 
beacon frame gets into the air [21]. Next field, beacon interval (2 octet) 
suppose to store in ni_intval  of struct ieee80211_node, third field 
capability information, then SSID followed by supported rate returned from 
the function ieee80211_add_rates(). CF parameter set information 
element, WME, WPA parameter and Traffic Information message (TIM) 
bitmap generated by AP and vendor specification. This project work is not 
concerned with these former set of parameters.  
 
 

 
 
 

 
Figure 4.8:  Pseudo code of interrupt driven beacon frame transmission  

 
beacon_send() 
{ 
 
 if( check previous beacon is pending ) 
 { 
  beacon_miss_count++ ; 
  if( consecutive beacon_miss_count is greater than  

    BEACON_MISS_THRESHOLD ) 
  { 
   chipset_reset(); 
   return from this method; 
  } 
 } 
 // if comes here beacon_miss_count should resume again  
  
  
  
 if( beacon generation and update is successfull ) 
 { 
  a. stop current DMA to beacon_queue; 
  b. insert the pointer of beacon frame into beacon queue; 
  c. enable beacon queue; 
  d. increase global beacon_xmit varible; 
 } 
 
} 
 
N.B. In this pseudocode, it is not been used real name of functions 
      to make it reader friendly 

generate_beacon_frame(); 
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      Allocation of beacon frame, set the frame length, and set 

appropriate bit is done by ieee80211_beacon_alloc()  function. 
However, after filling up and update the values of field of beacon frame, 
execution should back from 802.11 layer (net80211 module) to ath 
module. Now its time to construct the descriptor of transmission (TX) queue 
by invoking ath_beacon_setup() and a hal function  

 
ath_hal_setuptxdesc() by passing frame length, 802.11 layer 

header length, Atheros packet type (beacon), rate, ACK flags, RTS/CTS 
duration etc. it also needs to (un)map from PCI bus to CPU  and vice versa.   

So now we have successfully generated beacon frame. Therefore only 
task has left to put it into beacon frame. Before putting, we need to stop 
current DMA to beacon queue to be safe side. A hal function 

ath_hal_stoptxdma() is used then put the new beacon frame (frame 

address)  into beacon queue (indicated by sc_bhalq) and enable to 

hardware queue. To do these tasks, two hal function is used, 

ath_hal_puttxbuf(), ath_hal_txstart()  accordingly.  
 

Timing constraint and responsibility to start beacon transmission: 
 
Time synchronization of IEEE802.11 standard (see section 2.3) AP 

shall set the value of timestamp field of beacon so that it will be equal to the 
value of TSF timer of AP at the first bit of timestamp is transmitted to the 
physical layer of the device plus AP’s transmitting delay from MAC-Physical 
interface to its interface with wireless medium [21]. So it is unlikely possible 
to follow this timing constraint to put timestamp by software code. 
Moreover, this timing constraint has to maintain the synchronization of TSF 
timer within 4 microsecond plus propagation delay of Physical to Physical 
layer [21]. Therefore, most of WLAN chipset, like Atheros, takes care of 
setting timestamp. We have seen in section 4.3.2.4.a, beacon state 
initialization, before starting to transmit beacon by AP periodically, device 
needs to initialize beacon state. Device has to know two time, first is when 
SWBA interrupt has to issue, second beacon interval and nextTBTT. One 

of the major hal function, ath_hal_beaconinit(),  is used to do this by 
setting up chipset special register with two beacon parameter, beacon 
interval and nextTBTT. Moreover, it is very important to know that, 

according to the HAL specification, this hal function is suppose to use for 
following two tasks when chip set will act as AP: 

- set the hardware with new beacon interval, nextTBTT 
- start chipset TSF timer to increment (in microsecond) from 

zero.  
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So clearly if we do initialize beacon state, consequently, TSF chipset 
timer is being reset and start counting from zero. We will see next section, 
this is one of draw back we can not avoid for implementation for close loop 
approach. After beacon initialization, device already knows two important 
times, when to issue SWBA interrupt and time to send generated and 
queued beacon frame. SWBA interrupt occurs sufficiently before time to 
send next beacon. After this interrupt occur, execution goes on according 
to the description of section 4.3.2.4.b, interrupt driven beacon 

transmission, So beacon frame will be gated into the beacon queue and 
hardware responsibility to start sending the frame if medium is free. In case 
of, however, busy medium, beacon will be sending immediately after the 
current frame transmission. But this time shall not be accumulated with the 
nextTBTT or beacon interval.                 
 
4.3.2.5 Specific Description of OLA Implementation 
 

We already know from the section 3.3, the main idea of OLA, open 
loop approach is solely replacement of existing TSF functionality of AP to 
send beacon frame. Ideal case will be, AP does not know any timing 
information, get delimiter packet from TDP send instantly beacon frame 
and ensure the timing constraint of TSF synchronization between AP and 
station.   

 
If we analyze the open loop approach, two major steps have to be 

done to achieve the goal. One, disable the existing TSF functionality of AP, 
second; make the transmission of beacon driven by delimiter by 
sidestepping the hardware responsibility to start sending beacon frame. We 
have already   discussed how delimiter  traversed inside Linux kernel, 
then ultimately comes to AP interface (PCMCIA interface) buffer that 
enable to madwifi driver to have delimiter packet like other packet destined 
to AP interface or any station associated with AP. This design, however, 
has one drawback to particularly this project work, described in chapter 6.  

We have implemented ath_xmit() method pointed to device’s 

(net_device)  hard_start_xmit function pointer. Therefore, when 
kernel routing decision is over, particularly when netfilter and queuing 
discipline (see section 4.3.1 ) release delimiter or any other packet destined 
to AP interface or its associated station, ath_xmit() method will be 
invoked. No outgoing packet will be transmitting until this function 
execution. Now we need to be confirmed whether the packet is delimiter or 
other non-delimiter. In the former case, we invoke 
ieee80211_hardstart() for default xmit function for the device for 

non-delimiter packet which will be processed and classified in net80211 

module by calling ieee80211_hardstart() and 

ieee80211_classified() in /net80211/ieee80211_output.c .        
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From the specification of TDP router implementation [23], we 
already know that, delimiter is special UDP packet which Type of Service 
(TOS) or Differentiated Services Field Codepoints DSCP [24] 
of  IP header portion should contain specific pattern to identify delimiter. 
We implement to perform this identification procedure using a method 
called if_delimiter(). This method return true value the packet is 
delimiter UDP type packet, otherwise return false. Simplest way to do this, 
extract IP header of the packet and using tos member variable of struct 
iphdr  defined in  /source/include/net/ip.h . After confirming the 

delimiter we invoke handler_tdp() this function actually consider as 
process context initiator for all TDP AP implementation.    

Here it is important to know that, TDP router implementation 
explains that, the delimiter sent by TDP router is more frequent, the 
accuracy of TDP timing aligned with UTC more precise. For instance, 
sending delimiter every 1 ms (UTC time) will be more accurate than 
sending every 100 ms (UTC time). We already define the delimiter which 
would be used to drive beacon frame, i.e. would be consider as an 
indication of sending beacon is called tick.  So if TDP router is configured 
to send delimiter at 1 ms, certainly every 100th delimiter will be a tick if 
beacon interval of TDP AP is suppose to 100 ms (UTC time). We define 
this required number of delimiter as tick interval for the 
implementation.  We have option, for the experimental purpose, to the 
implementation to set the tick interval constant according to the 
configuration of TDP router and beacon interval of TDP AP.  For example, 

     Case A: Delimiter interval is equal to beacon interval of TDP AP 

   tick interval will be 1 

Case B: Delimiter interval is 1 ms (UTC), beacon interval of TDP 

AP 100 ms (UTC), certainly tick interval will be 100 

Case C:  Delimiter interval is 50 ms (UTC), beacon interval of 
TDP AP 100 ms (UTC), therefore tick interval is 2  
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  Figure 4.9: Pseudo code of open loop approach 
 

When we determine received delimiter as tick that will be similar to 
SWBA interrupt except to give to the hardware responsibility to send. From 
the description of section 4.3.2.4.a, beacon state initialization and beacon 
management functionality of madwifi, we already know that, it is unlikely 
possible to maintain timing constraint without giving responsibility to 
hardware to send beacon frame. However, one of the major goals of OLA 
is replacement of existing TSF functionality AP. So hardware is not 
responsible to start sending beacon rather a tick would be consider as 
indicator to start sending within zero time, ideally. It may not possible to 
achieve this goal without having much control to the hardware. We will 
discuss this issue more in section 4.3.2.5. Rather, we defined 
implementation of OLA as feasibility study of OLA. Without giving 
hardware to start to send beacon frame, the only way has left to work with 

 
OLA(sk_buff_for_packet, net_device_for_AP_interface ) 
{ 
   //get the delimiter or non-delimiter packet  
   //for AP interface from kernel 
  
 //extract IP header and get the TOS/DS filed 
 if( if_delimiter()) 
 { 
  received_delimiter++; 
  if(received_delimiter is equal to TICK_INTERVAL ) 
  { 
   //time to send beacon frame 
    
   tdp_driven_beacon_send(); 
   //similar procedure with Figure X  
   //except used h/w queue is data queue  
                  //or best effort queue   
   free_from_kernel(delimiter); 
   received_delimiter = 0;  
  } 
 
 }else{ 
  //default xmit function for the device 
  // trafic classification followed by priority setup 
  kernel_dev_queue_xmit(delimiter); 
  return;  
 } 
 
} 
 
N.B. In this pseudocode, it is not been used real name of functions 
      to make it reader friendly 
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existing chipset, to use different hardware queue to transmit beacon frame 
as normal data frame. Certainly this will not ensure the timing constraint 
and degrade performance seriously while network is busy. We invoke to 
generate and transmit beacon we invoke function tdp_beacon_send(). 

This is mostly customize version of ath_beacon_send() and execution 
of program flow is also very similar to the section 4.3.2.4.b. that’s why we 
leave here more detail description. However, after generation of beacon 
frame, we put it into the a hardware data queue by using function 
ath_hal_puttxbuf()  passed into hardware queue number . Since this 
implementation is considered as feasibility study, we experimented by 
using different queue to transmit beacon frame, e.g. best-effort queue, a 
data queue basically used WME (wireless multimedia extension, 802.11e ) 
QoS. It is important to note here, after gated beacon frame into the queue, 
we have nothing to do other than safely anticipation that; hardware will start 
to send it immediately.             
 
4.3.2.6 Specific Description of CLA Implementation 

 
We have studied in the section 3.3.2, goal of close loop solution is to 

make alignment of existing timing functionality of AP and make it time 
driven with TDP. Since delimiter packet doesn’t contain any timing 
information itself, arriving time of it should be considered as TDP timer in 
local system. Some simple steps have been followed to implement this 
approach. 

- preserve delimiter arriving time as TDP timer 
- measure the drift between TDP timer and chipset  time 
- if drift is crossed to a predefined threshold value, align the 

beacon frame transmitting time with TDP time, otherwise 
continue  

In this implementation, we reuse few methods from open loop 
implementation, e.g. ath_xmit() for receiving all packets for AP interface 
, if_delimiter(), for determining delimiter packet, handler_tdp() for start TDP 
processing etc., all of these function has been described details previous 
section.   
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Figure  4.10:  Pseudo code of close loop approach  
 

CLA(sk_buff_for_packet, net_device_for_AP_interface ) 
{ 
   //get the delimiter or non-delimiter packet  
   //for AP interface from kernel 
  
 //extract IP header and get the TOS/DS filed 
 if( if_delimiter()) 
 { 
  received_delimiter++; 
  increase TDP_timer according to TICK_INTERVAL; 
 
  if(received_delimiter is equal to TICK_INTERVAL ) 
  { 
   //measuring drift 
   TSF_time = get_chipset_time(); 
   drift = differnce(TSF_time, TDP_time); 
   if( drift is greater than threshold value ) 
   { 
      //so it needs to allign beacon transmission 

   //so it requires beacon   initialization, enable   
   //beacon timer, enable SWBA interrupt again etc... 

    tdp_beacon_init(); 
 
      //TDP timer should start counting from current TSF  
                     //time again 
    TDP_timer = get_chipset_time(); 
 
   } 
    
   free_from_kernel(delimiter); 
   received_delimiter = 0;  
  } 
 
 }else{ 
  //default xmit function for the device 
  // trafic classification followed by priority setup 
  kernel_dev_queue_xmit(delimiter); 
  return;  
 } 
 
} 
 
 
 //tdp_driven_beacon_send(); 
 //similar procedure with Figure X. no need to sketch again... 
   
N.B. In this pseudocode, real name of functions is nor used 
      to make it reader friendly 
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 One of the major goal of timing synchronization of CLA 
implementation is to measure drift between two time line, one chipset’s own 
timer, two, TDP timer (UTC time). But we don’t have TDP timer in the 
system.  We have maintained   
TDP timer using a counter variable, tdp_timer  in ath/if_ath.c  that 
should initialize with TSF timer of chipset two times, when AP is turned 
from normal master(AP) mode to TDP operation mode and when any 
beacon initialization for TDP occurs. tsf_timer is another counter that hold 
the current TSF time, chipset time returned by method  
ath_hal_gettsf64() which should be the value of 1 MHz chipset clock 
increasing one every microsecond.  
 
 To measure drift between two timelines, one timer suppose to be 
reference time, drift will be with reference to that timer. It is certainly not 
possible to set the chipset timer to any adjusted time. This idea leads to 
make us TSF timer as reference time. So difference between tdp_timer 
and tsf_timer will be the amount of drift.  According to the TDP router 
implementation explains that, the delimiter sent by TDP router is more 
frequent, the accuracy of TDP timing aligned with UTC more precise. For 
instance, sending delimiter every 1 ms (UTC time) will be more accurate 
than sending every 100 ms (UTC time). To keep option for further 
improvement and increase TDP AP system performance and scalability, we 
introduced the idea of tick interval (see previous section). By setting 
the appropriate value we can configure the beacon interval parameter of 
TDP AP whether TDP router is sending delimiter any lower interval. This 
idea also defines how tdp_timer will be increasing. For example if TDP 
router is configured to send delimiter at 1 ms (UTC), tdp_timer will be 
increasing by 1000 microsecond and the same way.  
 
 We have checked whether the drift has been crossed to a threshold 
value referred as drift threshold which is a configurable parameter of 
TDP AP at every tick interval, i.e. at beacon interval. For our experiment we 
set drift threshold value is 1000 microsecond. If this drift is crossed the 
drift threshold that means each beacon frame is being sent 1000 
microsecond later or before with respect to TDP timer. So we need to 
synchronize TDP AP with TDP timer. We called this process as 
alignment. So we need to initialize beacon state as described section 
4.3.2.4(a), Although we don’t need to follow all steps, but we need re-
enable beacon timer, re-start SWBA interrupt firing etc. These series of 
task has been in tdp_beacon_init() For AP operation nextTBTT and 
beacon interval parameter will be same, but according to Atheros chipset 
specification and hal function interval will OR-ed with 
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HAL_BEACON_RESET_TSF, HAL_BEACON_ENA    and eventually initialize 

the chipset registers by invoking hal function ath_hal_beaconinit().  
 We already know, it is serious performance degration if we miss any 
consecutive delimiter or delayed to arrive delimiter packet since TDP router 
is being act as timing master of TDP AP. We devised a simple algroithm to 
handle this like, we stored two time values timenow which contain current 
kernel time (in microsecond) returned by the method 
get_kerneltime_us() that actually used kernel API 

current_kernel_time() defined in /source/kernel/time.c  and 

timeprev which contains previous time of arriving of immediate last 
delimiter packet. We tried to find out whether we miss a delimiter by 
checking the difference between these two time values is more larger 
(defined in constant DELIMITER_MISS_THRESH ) than delimiter interval of 
TDP router. The number of consecutive missing 
(delimiter_misscount) delimiter is crossed a predefined constant 
value, we should reset the chipset or try to find out the reason. In case of 
missing less than DELIMITER_MISS_THRESH or delayed we should 
increase tdp_timer according to last recorded delimiter interval.    
 
 Beacon state initialization has to invoke a closed source hal function 
ath_hal_beaconinit() which leaves a compensation to CLA 
implementation, i.e. this method reset the TSF timer means TSF timer start 
counting from zero at every alignment. Timestamp value of beacon 
frame will be changed accordingly, so station associated with AP should 
not be affected.    Once alignment is completed, then its hardware 
responsibility to fire SWBA interrupt and eventually to start transmit beacon 
frame at exact time at predefined beacon interval as described in section 
4.3.2   
 
 We got an unavoidable difficulty to set beacon interval of TDP AP in 
implementation of CLA. The existing WLAN chipset certainly designed by 
following IEEE802.11 standard that specify the beacon interval will be in 
Time Unit (TU), a measurement of time equal to 1024 µs, i.e. 100 TU = 
102.4 ms. Hardware allows to set beacon interval as an integer value, for 

example 100 TU. In this case, AP suppose to send beacon frame at 102.4 
ms  interval.  
 

On the other hand, in the CLA, beacon interval of TDP AP will be 
according to delimiter interval of TDP router, equal to delimiter sending 
interval or an integer (say 100) multiplication of delimiter sending interval.  
According to TDP router implementation, the configurable granularity of 
setting delimiter sending interval is 1 ms now. It may possible to change. 
But for our experimental purpose, we set an appropriate tick interval 
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so that there will be a corresponding integer time unit value of beacon 
interval of AP. For instance, we did experiment 
  125  TU = 128 ms  or 
  167  TU =  171.008 ms (with 8 µs error)       
This constraint can be eliminated by allowing TDP router to configure for 
sending delimiter at µs (UTC) unit.  
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Chapter Five: 
 
 

System Evaluation 
 

 
 

The previous chapter describes of implementation of open loop 
approach and close loop approach. We have evaluated the system 
considering some issues, e.g. stability, scalability, and performance 
analysis of the prototype in different scenarios.    
 
5.1 Evaluation of Open Loop Approach: 

 
We have studied in section 4.3.2.5 that, it is reasonably impossible 

to achieve the goal of the OLA without full control of hardware and 
associated driver code.  We defined this implementation as feasibility study 
of OLA, since we considered beacon frame as a ordinary management 
frame of 802.11 management instead of giving hardware responsibility to 
start send it and certainly after putting it into the queue, driver code has 
nothing do except anticipate it will send as soon as gated into the queue. 
Therefore, it there is no other traffic for AP to send out, beacon frame is 
supposed to send immediately.  

 
During evaluation of performance of feasibility of OLA, we have mainly 

concentrated to determine: 
- the tick (TDP) driven beacon interval. and 
- how promptly beacon frame is driven by a tick (delimiter). 
 

We believe that, by measuring elapsed time between two times at 
which two consecutive beacon frames captured by a reliable and powerful 
network analyzer, Fluek Network, we will get tick driven beacon interval of 
TDP Access Point. Since, in our experimental setup there was no other 
significant traffic, we can anticipate that when we put beacon frame into the 
queue, device will start to send it. We have measured this time as beacon 
arrival time at network analyzer in different scenarios. For example: 

 
Here we should mention, in all of the experiment, we have used the 

testing tools, such as Fluek network analyzer to capture beacon frame 
using its wireless interface, as well as its Ethernet interface to capture 
wired packet. The arrival time of frame shows at system time up to ‘µs’ unit.  
We also use kernel time of TDP AP (from kernel syslog) that represents 
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current kernel time of the system, showable up to ns. It is important to 
notice, both values are coming from an ordinary PC architecture which may 
have some error. However, it’s supposed to be very negligible. Moreover, 
the TDP router is now also implemented on ordinary PC, since, according 
to its specification, it also has some negligible error in sending delimiter 
aligned with UTC time. We should consider, the following result is with this 
error (if any). 

 
Scenario-1: TDP router configured as delimiter interval 200 ms (UTC) 

  So, ideally, beacon interval of TDP AP is 200 ms(UTC). 
In the figure 5.1(a) (b) showed snapshot of the measurement. We 

have realized considerably constant beacon arrival interval (in ms, system 
time of network analyzer) with some (e.g. 7 microsecond) plus or minus. 
However, this more or less value is not constant any more, for instance, we 
found, interval is about or more than 50 microseconds.    
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Figure 5.1(a): snapshot of beacon arrival  interval from TDP AP in 
OLA 
 

 
 

Figure 5.1(b): snapshot of beacon arrival  interval from TDP AP in OLA 
 
 

Scenario-2: TDP router configured as delimiter interval 100 ms (UTC) 
  So, ideally, beacon interval of TDP AP will be 100 
ms(UTC). 
In the figure 5.2 showed snapshot of the measurement. We have 

realized almost similar value with scenario-1, i.e. considerably constant 
beacon arrival interval (in ms, system time of network analyzer) with some 
(e.g. 7 microsecond) plus or minus. However, this more or less value is not 
constant any more, for instance, interval is about or more than 50 or even 
70 µs.    
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Figure 5.2: snapshot of beacon arrival interval from TDP AP in OLA, 
scenario 2. 

 
Scenario-3: TDP router configured as delimiter interval 200 ms (UTC) 

  So, ideally, beacon interval of TDP AP will be 200 
ms(UTC). 

In this experiment, we use best effort hardware queue to 
transmit beacon.  

In the figure 5.3 showed snapshot of the measurement. We have 
realized almost similar value with scenario-1, i.e. considerably constant 
beacon arrival interval (in ms, system time of network analyzer) with some 
(e.g. 7 microsecond) plus or minus.  

 

 
 
 
Figure 5.3: snapshot of beacon arrival interval from TDP AP in OLA, 
scenario 3 (best effort hardware queue). 

 
To find out how promptly the beacon frame is drived by tick, we 

setup experimental testbed as shown in Figure 5.4. We capture two 
different frames into Ethernet interface and wireless interface by network 
analyzer. Ethernet interface, connected with Gigabit hub, captures delimiter 
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(tick), on the other hand, wireless interface of network analyzer captures 
that particular delimiter (tick) driven beacon frame and we saved time at 
which delimiter as well as beacon captured. As nature of hub, Gigabit hub 
broadcast delimiter packet to  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
 
 
 
 
 
 
 
 

Figure 5.4:  Experimental setup for OLA  
 
Ethernet interface of network analyzer as well as Ethernet interface of 
Linux box which has wireless interface that would be act as AP. Delimiter 
will be traversed and routed inside linux kernel get into AP interface and will 
be turned to SWBA interrupt to start sending beacon frame. This beacon 
frame will be driven by the delimiter. From section 4.3.1, we already know 
that, it takes significant time to be traversed and routed of delimiter packet 
inside linux kernel and then generate and update beacon frame. So we can 
safely assume that, time, when beacon frame captured will be later than 
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time, when delimiter captured by network analyzer. Therefore, difference 
between these two times will indicate the promptness of beacon frame that is 
driven by a tick (delimiter), since delimiter packet is suppose to be gated 
into the Ethernet interfaces of both network analyzer and Linux box at the 
same time. We did experiment same scenarios like previous paragraph.  

 
 In all scenarios, although, beacon frame is captured in 

expected and considerably constant interval (with some microsecond +/- ), 
but delimiter driven beacon frames are captured delayed with around 50 
ms. We referred this delay as phase shift. See figure 5.5 and 5.6 

 
 

 
 
 

Figure 5.5: Ideal timeline of delimiter and beacon frame 
transmission in OLA   

 

 
 

 
Figure 5.6: Experimental result of time line of delimiter and beacon 
frame transmission in OLA   
 
If we analyze the cause of phase shift of beacon xmit in our 

experimental setup, it will be the added value of time of the following steps: 
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a) uncertain and unknown time for delimiter to make routing decision 

by linux iptables, IP     layer of Linux kernel, to put pcmcia (AP) 
interface kernel buffer while jumping between two interface. See 
section 4.3.1 

b) After confirming delimiter as tick, SWBA interrupt, time to send 
beacon now. Invoking some methods to generate beacon frame 
followed by update some dynamic filed according to current state. 

c) unpredictable time to stay into the hardware data queue, see 
section 4.3.2.5. 

d) time to transmit by TDP AP and receive by network analyzer the 
whole beacon packet ( around 1200 µs) at 1 Mb/s data rate 
(practically ) of device ( beacon frame size is 124 * 8 bit ) 

 
We measured amount of this delay time, phase shift, in few scenarios 

(see previous section).  
 

Scenario-1: TDP router configured with delimiter interval 200 ms (UTC) 
  So, ideally, beacon interval of TDP AP is 200 ms(UTC). 
  And it has been used data queue. 
 
Packet 
Number Delimiter arrival time Beacon arrival time Phase Shift(ms) 

9 20:18:18.232138 20:18:18.294918 62.780 
10 20:18:18.432146 20:18:18.494927 62.781 
11 20:18:18.632155 20:18:18.694962 62.807 
12 20:18:18.832163 20:18:18.894961 62.798 
13 20:18:19.032172 20:18:19.094956 62.784 
. 
.    
63 20:18:29.032095 20:18:29.094855 62.760 
64 20:18:29.232103 20:18:29.294897 62.794 
65 20:18:29.432113 20:18:29.494893 62.780 
66 20:18:29.632120 20:18:29.694913 62.793 
67 20:18:29.832128 20:18:29.894913 62.785 
68 20:18:30.032139 20:18:30.094913 62.774 
69 20:18:30.232146 20:18:30.294937 62.791 

 
 Table 5.1: Phase shift of OLA in experiment scenario1  

 
Scenario-2: TDP router configured with delimiter interval 100 ms (UTC). So, 
ideally, beacon interval of TDP AP will be 100 ms (UTC). In this experiment, 
we use data queue to transmit beacon. Table 5.2 shows the result. 
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Packet 
Number Delimiter arrival time Beacon arrival time Phase Shift(ms) 
69 19:15:12.927679 19:15:12.994834 67.155 

70 19:15:13.027745 19:15:13.094762 67.017 

71 19:15:13.127687 19:15:13.194732 67.045 

72 19:15:13.227754 19:15:13.294594 66.840 

. 

.    
100 19:15:16.027746 19:15:16.094774 67.028 

101 19:15:16.127688 19:15:16.194760 67.072 

102 19:15:16.227630 19:15:16.294781 67.151 

103 19:15:16.327698 19:15:16.394709 67.011 

104 19:15:16.427640 19:15:16.494774 67.134 

105 19:15:16.527706 19:15:16.594532 66.826 

106 19:15:16.599732 19:15:16.694784 95.052 

 
  Table 5.2: phase shift (delay) of above setup in OLA 

 
 
Scenario-3: TDP router configured with delimiter interval 200 ms (UTC) 

 So, ideally, beacon interval of TDP AP will be 200 ms(UTC). In 
this experiment, we use best effort hardware queue to transmit beacon.  

 
Packet 
Number Delimiter arrival time Beacon arrival time Phase Shift(ms) 

6 20:35:44.276598 20:35:44.363769 87.171 
7 20:35:44.476605 20:35:44.563765 87.160 
8 20:35:44.676613 20:35:44.763765 87.152 
9 20:35:44.876622 20:35:44.963793 87.171 
. 
. 
 .   

107 20:36:04.476575 20:36:04.563556 86.981 
108 20:36:04.676585 20:36:04.763567 86.982 
109 20:36:04.876593 20:36:04.963597 87.004 
110 20:36:05.076601 20:36:05.163574 86.973 
111 20:36:05.276611 20:36:05.363584 86.973 
. 
. 
    

145 20:36:12.076523 20:36:12.163614 87.091 
146 20:36:12.276531 20:36:12.363507 86.976 
147 20:36:12.476538 20:36:12.563504 86.966 

  
Table 5.3: phase shift of scenario-3 in OLA 
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5.2  Evaluation of Close Loop Approach: 
 

We studied the implementation of close loop approach, the 
objective this solution is to make alignment of existing timing functionality of 
AP and make it time driven with TDP router. We should evaluate rigorously 
how much drift between TDP timer and chipset time is happening at every 
tick interval, moreover,  in due course, how many alignment (if any) is 
needed for a particular time range.  Secondly check out how precisely 
beacon frame transmission is time driven with TDP router. We should 
explain here the methodology of experiment to evaluate CLA solution how 
we prepared the result of experiment. We have used very common kernel 
debugging system printk() and redirect syslog ( /var/log/messages ) daemon. 
Details of this description should be beyond here.  We found the required 
data in a text file followed by parsing this text file writing some simple shell 
script. Graphical representation has been created using spreadsheet 
software (MS Excel). 

Experimental Configuration-1: 
 TDP router is configured to send delimiter at 1 ms(UTC) 

interval and tick interval is 100 ms. So TDP AP is supposed to take every 
100th delimiter  as tick and measure the drift followed by an alignment, if 
any.   

 
We have measured how much time is drifted with reference of 

TSF time per tick basis for few hundred alignments in experimental 
configuration- 1. The value of drift is not constant any more but it increased 
almost constantly. Table 5.4 shows some snaps of continuous tick number 
and drift. For instance in one alignment it was needed 1927 ticks to reach 
drift of 1009 µs. So, averagely, about 0.524 µs drift has been reached in 1 
tick (100 ms)  

 
 

Continuous serial 
number of Tick 

Tick Number Drift (microsecond) 
with reference of TSF time 

. 

. 
. 
. 

. 

. 

6264 1951 -892 
6265 1952 -952 
6266 1953 -1010 (alignment) 
6267 1 66 
6268 2 9 
6269 3 75 
. 
. 

. 

. 
. 
. 
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6962 696 -259 
6963 697 -318 
6964 698 -252 
. 
. 

. 

. 
. 
. 

7709 1443 -749 
7710 1444 -683 
7711 1445 -741 
. 
. 

. 

. 
. 
. 

8192 1926 -951 
8193 1927 -1009 (alignment) 
8194 1 66 
8195 2 9 
. 
. 

. 

. 
. 
. 

  
 Table 5.4 : drift per tick and showed the alignment 
 

drift vs tick number for one alignment
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Figure 5.7: drift per tick for one arbitrary alignment 
 
Figure 5.7 shows how drift is increased per tick. We choose arbitrary 3 
alignments and for each alignment how drift gradually increase. For 
simplicity, we plot this graph by value of drift every 50th number tick, 
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otherwise graph won’t be readable. Number of required ticks for one 
alignment is not constant but averagely almost equal.   
 

drift per tick for 3 alignments
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Figure 5.8: drift per tick for three consecutive arbitrary 
alignment 

 
 
 We evaluate the stability of TDP AP in respect with the required 
number of alignments in particular time duration. We configured the system 
as experimental configuration-1  and analyze the system performance two 
long time period, one is from  4:11:48 to 7:06:42 (system time) another one is 
from 9:18:43 to 15:23:20. we kept record the kernel time of system when an 
alignment has occurred, see Table 5.5 and Table 5.6 and how many alignment 
has occurred from start of these experiments.   

 
 
 

Tick Number 
System Time  
(upto second) 

Number of Alignments 
happened so far 

3864 4:11:48 -- 
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11187 4:24:01 7 

20306 4:39:13 12 

29496 4:54:32 17 

38615 5:09:44 22 

47790 5:25:01 27 

57019 5:40:24 32 

66233 5:55:45 37 

75438 6:11:06 42 

90193 6:35:41 50 

99486 6:51:11 55 

108794 7:06:42 60 

118089 7:22:11 65 

127386 7:37:41 70 

136752 7:53:17 75 

 
Table 5.5: Number of alignment happened from system time from  

4:11:48 to 7:06:42 
 
If is important to know, how much time needs for one alignment (from 
Table 5.6): 
 
 
 
 
  
 
This table shows 110 alignments occur in  5:48:47 hour, i.e.  
( 5*60*60 + 48*60 + 47 ) = 20927 second . 
So averagely, one alignment has occurred at every  ( 20927 ÷ 110 ) = 

190.2455 seconds 
 

System time 
(up to second) 

Number of Alignments 
happened so far 

9:18:43 -- 

9:34:33 6 

9:50:22 11 

10:06:10 16 

10:21:57 21 

Time 
No of Alignment 

 
15:23:20 116 

9:34:33 6 
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10:37:47 26 

10:53:47 31 

11:09:55 36 

11:25:55 41 

11:41:46 46 

11:57:34 51 

12:13:22 56 

12:32:19 62 

12:48:07 67 

13:03:56 72 

13:19:46 77 

13:35:38 82 

13:51:28 87 

14:04:06 91 

14:19:55 96 

14:35:47 101 

14:51:38 106 

15:07:30 111 

15:23:20 116 

 
 Table 5.6: Number of alignment happened from system time   

9:18:43 to 15:23:20 
 
      We have showed another important data, average number of tick 
needed to occur per alignment with respect to time.  We have organized 
record in almost 6 hours, from 9:18:43 to 15:23:20 calculated average 
number of tick needed per alignment  

 

System time 
(upto second) Elapsed Time 

No. of Alignments 
in elapsed  time 

Average Number of 
Tick Needed per 

alignment 

9:18:43 -- -- -- 

9:34:33 0:15:50 5 1899 

9:50:22 0:15:49 5 1896 

10:06:10 0:15:48 5 1894 

10:21:57 0:15:47 5 1899 
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10:37:47 0:15:50 5 1921 

10:53:47 0:16:00 5 1935 

11:09:55 0:16:08 5 1920 

11:25:55 0:16:00 5 1902 

11:41:46 0:15:51 5 1896 

11:57:34 0:15:48 5 1896 

12:13:22 0:15:48 5 2275 

12:32:19 0:18:57 6 1580 

12:48:07 0:15:48 5 1897 

13:03:56 0:15:49 5 1899 

13:19:46 0:15:50 5 1905 

13:35:38 0:15:52 5 1899 

13:51:28 0:15:50 5 1516 

14:04:06 0:12:38 4 2374 

14:19:55 0:15:49 5 1902 

14:35:47 0:15:52 5 1903 

14:51:38 0:15:51 5 1904 

15:07:30 0:15:52 5 1900 

15:23:20 0:15:50 5 -- 

 
Table 5.7: Average number of tick per alignment from system time   

9:18:43 to 15:23:20 
 

We found stability of alignment occurring is considerably constant (but 
not exactly constant, see figure 5.10 and 5.11), for example, averagely, one 
alignment took around  1909.636 tick during time period from 9:34:33  to 
15:23:20, on the other way, in this experiment tick interval was 100 ms 
(UTC) so (1909.636 × 100) at every 190963.6 ms (UTC) one alignment has 
occurred. 

 
We already know, alignment is initializing the beacon state with re-

enable beacon timer, restart SWBA interrupt and as a side effect of it 
restart counting TSF timer from zero. However, it is remain absolutely 
hardware responsibility to start sending beacon frame which supposed to 
be gated into the beacon hardware queue before time to send beacon as 
next frame. Now we should think about the experiment how beacon frame 
is transmitting while alignment is occurring at averagely 190.2455 seconds 
interval.   We did this experiment in following configuration: 
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Stability of system: required number of tick per alignment
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Figure 5.10: linear graphical presentation of average number of 
required tick per alignment 

 
Figure 5.11: linear graphical presentation of average number of 
required tick per alignment from system time   9:18:43 to 15:23:20 

 
 

Experimental Configuration-2: 
 TDP router is configured to send delimiter at 1 ms(UTC) 

interval and tick interval is 128. So TDP AP is supposed to take every 128th 
delimiter  as tick and measure the drift followed by an alignment, if any. 
Beacon interval of TDP AP is 125 TU (i.e. 128 ms) and drift threshold is set 
to 1 ms (1000 µs ). 

 
However, it is important to realize that, some time hardware stop 

sending only one ‘queued’ beacon if any alignment is happened exactly drift 

threshold, dt,  before the next beacon transmission time, see figure 5.13(a) 
and 5.13(b). On the other hand when an alignment happened exactly drift 
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Stability of System:  required no. of tick per alignment
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Figure 5.12 shows a snapshot of capturing beacon frame arrival time at 
network analyzer.  
 

 

 
 

 
Figure 5.12: A snapshot of capturing beacon frame arrival time 

 
threshold ‘after’ the next beacon transmission time, within that drift threshold 
time, it should not be any ‘queued’ beacon frame. Since TSF timer start 
counting again, beacon arrival interval will be beacon interval time plus dt 
drift threshold.  
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Figure 5.13 (a): case 1, beacon frame arrival time while alignment occur 
 

 

 
 

Figure 5.13 (b): case 2 of beacon frame arrival time while 
alignment occur 

 
Figure 5.13(a), (b) shows our result of Experimental configuration-2 can 

consider as former case. When alignment happened, beacon arrival 
interval is 255 ms (128ms + 128ms – 1 ms) Since beacon interval 128 ms 
and alignment occur exactly before drift threshold (1000 µs).  

We also got the result for later case, while alignment needs dt time 
after beacon transmission time (when TDP timer is ahead of TSF timer). 
Beacon arrival interval was 129.018 ms (128 ms +  1000 µs) with few µs 
error. 

In the first case, a client associated with TDP AP is getting beacon 
frame after (about) two beacon interval time while an alignment occur. On 
the other hand, second case, client will be getting beacon frame drift 

threshold time before the beacon interval.      
    
This incongruity, an irregularity of beacon frame transmission timing is 

only happen after (around) every 2000 beacon frames. So certainly it is not 
a serious problem for a station.         
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Chapter Six:  
 

    

Discussion and Future WorkDiscussion and Future WorkDiscussion and Future WorkDiscussion and Future Work 
 
 
 

This chapter discusses some difficulty, we have faced, to implement 
the proposed solution on the existing hardware, associated with closed 
source code, known limitation of the implemented solutions with some 
experimental suggestion to extend this project work. 

 
TDP router is considered as timing master of a particular time-driven 

wireless network. One of the major responsibilities of TDP router is to send 
a special UDP packet, delimiter to TDP AP at predefined time interval to 
reveal its existence and provide timing indication to time-driven wireless 
network.  
TDP AP has to assume safely following things: 

- There is no propagation delay between a delimiter is sending by 
TDP router until AP interface receiving that. So time between those 
two event suppose to virtually zero. 

- TDP router is sending delimiter in correct time. 
- Any delimiter should be not missing. 

 
As describe above, timing indication for both solutions, CLA and OLA 

is being taken from confirming of arrival of delimiter packet. Delimiter frame 
itself, doesn’t contain any timing information from TDP network. In the 
current implementation, delimiter packet has been let to be routed via IP 
layer (netfilter) of kernel, as described in section 4.3.1, that takes uncertain, 
unpredictable and non-constant time. We got the experimental result of 
OLA, section 5.1, phase shift of about 50 ms. One of the major cause of this 
delay is time to traverse delimiter packet. More over, from the evaluation of 
CLA, figure 5.7, amount of drift for each tick is not uniformly equal. Since in 
the current TDP router implementation, the delimiter packet doesn’t have 
any timing value of current time of TDP router, so clearly it is NOT 
expected to let delimiter be routed inside kernel iptables. This work was 
outside of scope of this project, can be considered as one of the major 
future work to make wireless network time-driven.  

Recent Linux kernel has rich ‘modularity’ feature that leads inter-
module communication is more dynamic and easier [18]. As a kernel 
module, wireless interface driver can get indication of arriving delimiter 
packet directly from Ethernet device driver module. There is several ways 
to implement this idea [18], which certainly enable to avoid IP layer routing 
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time of delimiter packet. This could be the starting point of future work of 
this project. 

One of major drawback of current implementation of TDP router, 
working as timing master of TDP AP, is sending delimiter without putting 
any timing value in the frame. That makes complicated the implementation. 
We believe modification to TDP router should be part of future work that 
should facilitate CLA implementation easier.   

 
Although, the GPS card can support an interrupt granularity (e.g.1024 

µs), but the current implementation of TDP router specify delimiter sending 
granularity (e.g. TF duration 125µs for slow link) has to be submultiple of 
the second (because the TDP supercycle duration is 1 UTC second). So, 
currently, it is possible to configure delimiter granularity (for example) 1000 
µs, 2000 µs, 500 µs, 250 µs etc. On the other hand, since the design of 
existing WLAN chipset is certainly followed IEEE802.11 standard that 
specify the beacon interval will be in Time Unit (TU), a measurement of time 
equal to 1024 µs. Therefore, we got an unavoidable difficulty while aligning 
beacon interval of TDP AP with delimiter interval since WLAN chipset 
allows only TU (say 100 TU) which is 100 multiple of 1024 µs. This 
constraint limits the freedom to set beacon interval of TDP AP with possibly 
two values, practically: 
  125 TU = 128 ms  or 

 167 TU =  171.008 ms (with 8 µs error)       
 

Theoretically, closed loop solution is not ideally time-driven with TDP 
timer. Once an alignment happened TSF timer start counting again, sending 
beacon frame ‘aligned’ with TDP timer with some µs before or after 
because of the drift. However, this difference will never cross drift threshold. 
This phenomenon    has described in figure 6.1 and 6.2.  

 
 
 Figure 6.1: Ideally tick time and beacon frame xmit time line  
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 Figure 6.2: tick time and beacon xmit time line with drift in CLA  
 
 
What is the compensation, we have to pay for an alignment. During 

alignment we had to invoke an HAL routine (closed source) that (re)start 
counting TSF timer. But with the current hardware, this is not happened   
for normal operation except when device experienced a fatal error needs to 
reset chip or switch to new channel. Since we don’t have code of this 
routine or even any official specification from vendor, we can not try to 
avoid this limitation of the current implementation.  
  

More over, we got the result, see section 5.2. b)  Experimental 
Configuration-1, in the first case, when alignment occurred drift 
threshold, dt, time before the nextTBTT,  a client associated with TDP 
AP is getting beacon frame after (about) two beacon interval time. On the 
other hand, second case, when alignment occurred dt time just after the 
last beacon transmission time, client will be getting beacon frame dt time 
after the beacon interval.      

From the description of CLA, we are informed that, beacon state 
initialization needs to invoke a hal function (ath_hal_beaconinit) which is a 
closed sourced function provided by chipset vendor. Unfortunately, like 
other vendors, Atheros did not provide any kind of specification or 
documentation of binary module (HAL) for open source community. We 
have been verified from open source community, the major task of this 
function is to set chipset with two major beacon parameters, nextTBTT,  
beacon interval and (re)start counting TSF timer from zero and stop 
sending already queued beacon since this function also needs to enable 
beacon timer of chipset  and another logic is what will be timestamp value 
of queued beacon frame. It should mention here again timestamp value will 
be TSF time when first bit of beacon frame goes to physical layer of the 



 69 

device. So timestamp value of that beacon will be dt µs Unfortunately, we 
don’t have any official reference of this specification from chipset vendor. 

The above incongruity, an irregularity of beacon frame transmission 
timing is only happen for one beacon after (around) every 2000 beacon 
frames. So certainly it is not a serious problem for a station.  

 Other than above known limitation, we have seen the CLA implementation 
has achieved up to the mark. We believe, these limitations can be worked 
out by choosing appropriate platform that is solely open source. For 
example compare with Madwifi with Atheros provided closed HAL; 
bcm43xx,  as described in section 4.1.c, should be more useful platform to 
implement solutions for this project [11]. We would have chosen this 
platform; however, unfortunately, bcm43xx was not stable that time. But at 
the time writing this report,  bcm43xx, which has no binary crap, is stable 
and should be considered as the platform of future work. 

  
We have realized that, it may not possible to achieve goal of OLA 

completely without having microcontroller of WLAN chipset or full code of 
lower level MAC. That’s why we called this implementation as feasibility 
study or emulation of OLA. Evaluation of current OLA implementation 
(section 5.1) on current hardware, we have found significant good result in 
the case of consecutive beacon interval.  However, phase shift between 
TDP timer and TSF timer is significantly more, that makes this 
implementation complicated.    

 
As part of future work, it can be possible to use the current 

implementation of CLA with some added functionality as describe above to 
port into embedded Linux kernel with different CPU architecture for a 
commercial access point. This work needs to do following steps, e.g. some 
modification of current implementation of CLA, cross compilation for target 
architecture in consider with presence of Linux kernel in the target AP. 
Vendor provided binary part, HAL, of this driver specify that, it supports 
couple of architecture e.g. x86, ARM, MIPS, CRIS etc. A good example can 
be found  [24] [25].  
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Conclusion 
 
This work has provided a kernel-based prototypal solution for wireless 

extension of time-driven switching network on the existing hardware for 
802.11 protocol stack. The Implementation envisaged the emulation of 
UTC-synchronized beacon frame generation of an access point that helped 
to design of a synchronous packet scheduler. The implementation has 
been done directly in kernel space of Linux operating system that manages 
network layer and partially MAC layer. Implementation of proposed 
approaches was difficult since most of the time-critical activities of 
management frame controlled by firmware of chipset and vendor specified 
closed source code. However, the goal of the close-loop has been 
achieved with a known limitation. Experimental result shows that, it is non-
trivial to implement open-loop approach on existing hardware and standard.  
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Appendix 
    

Appendix A.1:   The OSI Layered Model 

 

 
Appendix A.2:   
 

 
The configuration file set (valid for Ethernet –Wireless interconnection) for 
shorewall, used for enable IP routing inside Linux kernel iptables,  is written 
below: 

 

Zones file:  ZONE TYPE OPTIONS IN   OUT 
       OPTIONS  OPTIONS 
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   ------------------------------------------------- 
fw firewall  
wifi ipv4 
cable ipv4 

 

Interfaces file:  ZONE   INTERFACE     BROADCAST OPTIONS 
   ------------------------------------------------- 

wifi      ath1            detect          
cable     eth0            detect          

 

Policy file:    SOURCE DEST  POLICY 
------------------------------------------------- 
cable  wifi  ACCEPT  
wifi  cable  ACCEPT 
all  $FW  ACCEPT 
all  all  REJECT 

 

 


