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Abstract 

As data traffic on the Internet continues to grow exponentially, there is a real need to solve the switch bottleneck by 

developing ultra-scalable switching fabrics. Although in recent years there have been a lot of efforts to solve the switching 

fabric scalability problem, in the optical domain, the proposed solutions have been (very) expensive, (very) complex and 

(much) larger than electronic switching fabric alternatives. Unfortunately, electrical interconnection of existing (off-the-shelf) 

electronic switching devices is very difficult due to wave reflections on transmission lines, impedance mismatching, crosstalk 

and noise. 

Consequently, electronic switching with electrical interconnections has major scalability limitations. Thus, the 

question is whether and how optical interconnects  can be used to link off-the-shelf electronic switching devices in order to 

develop optoelectronic switching fabrics that can scale up to 10-100 terabit per second (Tb/s) capacity in a single chassis. In 

order to further increase the scalability of the proposed novel optoelectronic switching fabric a UTC-based (coordinated 

universal time) time driven switching (TDS) or fractional lambda switching (FλS) architecture is proposed. This novel low-

complexity switching architecture capitalizes on the ubiquitous of UTC from GPS and Galileo. TDS architecture is especially 

suitable to support high capacity streaming media applications over the Internet.  

Keywords: optical networks; optical switching, sub-lambda switching; fractional lambda switching, time-driven 

switching, optical interconnect, scheduling, streaming media, switch prototype (key words) 
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I. Introduction and Basic Principles 

Despite recent slow-down in the telecom industry, the Internet traffic is still doubling roughly 12-18 

months. Driven by the proliferation of services such as online interactive entertainment, voice/video/TV 

over IP and various other real-time streaming media applications, the high-speed Internet access to homes 

and businesses is becoming a reality. These new applications are projected to be a major source of revenue 

growth in the networking businesses. Thus, streaming media applications are the main driving force 

determining the technologies that should be adopted to ensure the continuous profitability of the telecom 

business.  

This paper proposes a low cost optoelectronic switch design. The switch architecture guarantees 

deterministic QoS for streaming media over the Internet and is scalable to 10-100 Terabit per second. In 

order to achieve such performance pipeline forwarding of IP packets is used. Pipeline forwarding is a 

method known to provide optimal performance independent of specific implementation. Invented by Henry 

Ford, pipeline forwarding is still the most efficient manufacturing process today. All computers today 

operate using pipelines, a simple extension of Ford’s assembly line. 

Optical transmissions in the form of wavelength division multiplexing (WDM) have allowed a huge 

capacity increase. While WDM solves the link bottleneck, the continuous exponential traffic growth, which 

has to be routed through the Internet backbone, constitutes a major switching bottleneck. The only possible 

exception is whole wavelength (or lambda) switching, which allows the provisioning of a whole wavelength 

(WDM optical channel) between source and destination. The whole lambda switching approach suffers from 

poor scalability, since it requires O(N
2
) lambdas, where N is the number of access nodes. Consequently, the 

whole wavelength switching approach is inefficient (i.e., wasteful) and expensive in the manner in which 

WDM optical channels are used. 

I.A Related Works 

Optical burst switching (OBS) �[7], was proposed as a middle stage towards the realization of optical 

packet switching (OPS). A burst accommodates a possibly large number of packets. In some OBS designs, 

control packets are forwarded in a control channel to configure switching nodes before the arrival of 

corresponding bursts, hence reducing the requirement of optical buffers. Though OBS is interesting and 

some protocols were defined for it �[8]�[9], the behavior of burst switching as an asynchronous switching 

system makes it hard to implement and control the optical switching fabric even when the traffic load is 

moderate or even low. Besides, grooming traffic into bursts at ingress nodes of OBS networks is another 
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difficult issue. In general, an asynchronous optical packet switching network may be the ultimate goal for 

all-optical networking. However, two key technologies have still long way for maturity: realizing 

asynchronous optical random access memory and asynchronous optical packet header processing.  

Time-driven switching (TDS) or fractional lambda switching (FλS) utilizes common time reference 

(CTR), which can be realized with UTC (coordinated universal time). UTC provides phase synchronization 

or time of day with identical frequencies everywhere. In contrast, traditional TDM (time division 

multiplexing) systems, such as SONET/SDH, have neither phase synchronization nor identical frequencies. 

Thus, unlike systems with UTC, TDM systems are using only frequency (or clock) synchronization with 

known bounds on frequency drifts. Early results on how UTC is used in packet switching were published in 

�[10]�[12].  In addition, there are major challenges for implementing SONET/SDH TDM in the optical 

domain. Nevertheless in the past ten years there were number of works on combining WDM with TDM 

�[13]-�[15]. None of these works was using UTC with pipeline forwarding, as discussed in Section I.B., and 

lack of the detailed treatment of critical timing issues. Specifically, regarding the accumulation of delay 

uncertainties or jitter and clock drifts, which is solved by using UTC with pipeline forwarding.  

In �[13], an optical time slot interchange (TSI) utilizing sophisticated optical delay lines is described 

with no detailed timing analysis. In �[14] and �[15] two experimental optical systems with in-band master 

clock distribution and optical delay lines are described, with only limited discussion about timing issues. In 

�[15] a system with constant delays and clocks is described, which can be viewed as a close model to 

immediate forwarding (see Section I.C), however, no timing analysis and no consideration of non-

immediate forwarding (see Section I.C). 

I.B TDS Timing Principle  

Sub-lambda or fractional lambda switching (TDS) was proposed as an effort to realize highly scalable 

dynamic optical networking �[3]-�[6], which requires minimum optical buffers. TDS has the same general 

objectives as in OBS and OPS: gaining higher wavelength utilization, and realizing all-optical networks. In 

TDS, a concept of common time reference using UTC (coordinated universal time) is introduced. A UTC 

second is partitioned into a predefined number of time-frames (TFs). TFs can be viewed as virtual 

containers for multiple IP packets that are switched at every TDS switch, based on and coordinated by the 

UTC signal. As shown in Figure 1, a group of K  TFs forms a time-cycle (TC); L  contiguous time-cycles 

are grouped into a super cycle (SC), for example, in Figure 1, K =1000 and L =80. To enable TDS, TFs are 

aligned at the inputs of every TDS switch before being switched. After alignment, the delay between any 

pair of adjacent switches is an integer number of TFs. The central element of TDS is the method of pipeline 
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forwarding with the necessary requirement for common time reference – e.g., UTC. In TDS, a fractional 

lambda pipe (FλP) p  is a predefined schedule for switching and forwarding TFs along a path of subsequent 

TDS switches. The FλP capacity is determined by the number of TFs allocated in every time cycle (or super 

cycle) for the FλP .p   For example, for a 10 Gb/s optical channel and K =1000, L =80 if one TF is allocated 

in every time cycle or super cycle the FλP capacity is 10 Mb/s or 125 Kb/s, respectively.  

 

1 2 1000

Time

Cycle0

1 2 1000

Time

Cycle1

1 2 1000

Time

Cycle 79

Super-cycle

with 80k Time-frames

CTR/UTC
0

beginning 

of a UTC second

1

beginning 

of a UTC second

fTfTfT
fT fT

 

Figure 1. Division of an UTC second in TDS 

I.C TDS Forwarding Principle  

TDS defines two possible types of forwarding, as shown in Figure 1. The first one is immediate 

forwarding (IF): upon the arrival of each TF to an TDS switch, the content of the TF (e.g., IP packets) is 

scheduled to be “immediately” switched and forwarded to the next switch during the next TF. Hence, the 

buffer that is required is bounded to one TF and the end-to-end transmission delay is minimized.  

The other type of packet forwarding is called non-immediate forwarding (NIF). NIF requires buffers 

at TDS switches. Let us assume that, at each switch, there is a buffer of B  TFs at each input channel. The 

content of each TF arriving to the TDS switch can be buffered for an arbitrary number bk  of TFs (1 bk B≤ ≤ ) 

before being forwarded to the next switch. NIF offers greater scheduling feasibility than IF. 
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kb-forwarding 

Input 

Output 

 

 Figure 2. Illustration of IF and NIF in time domain 

I.D Time-driven priority 

Previous sections presented TDS principles of work, focusing on its features and strengths. These 

sections should point out as TDS is more suitable in very high speed optical backbones, where traffic could 
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be divided in FλPs outperforming a layer-2 switching based only on the time. More flexibility could 

however be required at the edge of the network – for example, the conventional IP destination-address-

based routing. Time-driven priority (TDP) [18] is a synchronous packet scheduling technique that can 

ensure this level of flexibility while maintaining the same principles of work and the same strengths that 

characterize the TDS technology. The difference is that packets belonging to the same TF that enter the 

switch from the same input port could be sent out from different output ports, according to the rules that 

drive an internal forwarding module. So, routing and forwarding may be indifferently based on the already 

mentioned conventional IP destination-address-based routing, or multi protocol label switching (MPLS), or 

any other technology of choice. 

 

II. Switch Prototype General Description 

II.A Design and implementation considerations 

The innovation introduced and presented in the first section of this article makes experimental 

demonstration mandatory for the verification of concept. Simplicity, user friendliness and low cost, using 

off-the-shelf components are the main features of proposed high speed switch architecture. Keeping in mind 

these features/objectives the biggest challenge is to select suitable components and device for constructing 

the switch fabric on a single chassis. 

After surveying the market and performing in-depth analysis of available components e.g. switching 

devices and optical links, we short listed, High-Performance Evaluation Board manufactured by Mind 

Speed. Mind Speed cross point switch is a low-power CMOS, high-speed 144 x 144 crosspoint switch with 

integrated CDRs, input equalization, and built-in system test features. Each switch maximum capacity is 

3.2Gbps. The Mind Speed switch board supports SONET, GbE, 10GbE, Fibre Channel (1x, 2x, 10x) and 

Infiniband applications, it provides flexibility in selecting suitable optical gigabit Ethernet transceivers and 

related fiber links for physical connection for data transport. The board features also include programmable 

input equalization with Clock and Data Recovery (CDR) for random and deterministic jitter reduction. To 

achieve the best possible signal, each CDR is preceded by a programmable input equalizer (IE), and each 

output includes Output Pre-emphasis (PE). The IE removes ISI jitter usually caused by PCB skin effect 

losses. The IE circuit opens the input data eye in applications where long PCB traces and cables are used. 

As a result, the device exceeds the SONET requirements with jitter tolerance of 0.65 UI, and jitter 

generation of less than 1.5mUI (rms) or 8mUI (peak-to-peak). The PE provides a boost of the high 
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frequency content of the output signal, such that the data eye remains open after passing through a long 

interconnect of PCB traces and cables.  

The Mindspeed switching matrix chip is installed on a board having 8 input and 8 output ports high 

speed data links with SMA connectors for balanced electrical connections. It is complete with parallel and 

high speed serial control busses and an interchangeable computer interface (controller). 

A FPGA controller for dynamic configuration of the switch has been designed and fabricated. The 

FPGA controller allows the dynamic configuration of the switch and implements the UTC controlled 

routing at the switch level. The GUI for the UTC controlled routing is implemented on a personal computer, 

which is connected to the FPGA controller by means of a USB link. The GUI facilitates the connection of 

the various input, output ports at different time frames. 

UTC time and frequency reference is obtained from a high performance GPS signal receiver 

connected to GPS antennas. 

Ten megahertz and one pulse per second signals are generated by a Tekelec low cost GPS frequency 

generator, operating with accuracy comparable to rubidium oscillators. The most important feature that GPS 

time is distributed all over the world in a consistent way. With the help of this technology all switches have 

the same time signals with discrepancies of the order of one microsecond.  

The combination of the switching board, GPS receiver and FPGA controller plus a windows PC 

dedicated to controller initialization, implements a switching layer. A dual layer Banyan network switch has 

been implemented by connecting two switching boards to a single controller. 

A complete network has been also implemented by using the dual layer switch and a single layer 

switch interconnected by a 25 km gigabit fiber data link. 

The Mindspeed experimental board can be programmed to correctly interface to standard GBIC 

transceivers. Standard multimode transceivers have been used for optical interconnections between the 

switch and data sources and destinations. Bidirectional 1300-1550 nm single mode transceivers have been 

used for interconnecting the two switches to create the demonstration network.   
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II.B End-to-end prototype setup 

 

Figure 3. End-to-end Prototype setup 

The diagram shown above is an overview of the prototype. The setup major components are streaming 

sources for streaming audio, video and or text, a network interface which schedule the packets forwarding, 

the Switch Fabric consists of two Mindspeed switch boards and FPGA based switch controller for dynamic 

configuration of switch, 25km optical fiber. On the other side of optical fiber there is another switch fabric 

consists of one Mindspeed Switch Board, network interface and two receivers for receiving and playing the 

two movie streams with sound transmitted from the source. 

The detail setup diagram (one side of optical fiber) with all components and devices used is shown in 

Figure 4.  
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Figure 4. Detailed setup diagram 

Two streaming films destined for two different receivers, one DVD film with soundtrack and subtitle 

while other animation film with soundtrack only, are transmitted from one PC (shown IP Stream) using 

VLC media player. VLC (initially VideoLAN Client) is a highly portable multimedia player for various 

audio and video formats (MPEG-1, MPEG-2, MPEG-4, DivX, mp3,...) as well as DVDs, VCDs, and 

various streaming protocols. It can also be used as a server to stream in unicast in IPv4 or IPv6 on a high-

bandwidth network. The asynchronous packets are sent to the router which schedules the packets 

forwarding in synchronization with 1pps signal from GPS through GPS antennas and subsequently through 

TekLec card. The TekLec card is powered by 12V, 1A power supply. The switch controller has been 

implemented on Opal Kelly FPGA module. Each FPGA module can support two Mindspeed switch boards. 

Each Switch board is powered by two power sources 12v, 1A and 1.2V, 1.8V. A dual layer Banyan network 

switch has been implemented by connecting two switching boards to a single controller. Standard 

multimode transceivers have been used for optical interconnections between various Electrical to Optical 
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and vice versa conversion points. Bidirectional single mode transceivers have been used for interconnecting 

the two switch boards. A 25km optical fiber is used to connect the two switch fabric of the network. Switch 

fabric on the other side (or receiver side) of 25km fiber consists of one Mindspeed switchboard unlike the 

two boards used on the source side of fiber. Two PCs having VLC multimedia player are connected to 

switch fabric for receiving and playing the two video streams. 

III. Time-driven Switch Interface 

The Internet is mostly based on asynchronous packet switches. Thus, especially in an initial 

deployment phase, TDP/TDS switches would have to coexist and interoperate with current asynchronous 

packet switches as depicted in Figure 5. Synchronous edge routers would be required in order to control the 

access to the synchronous backbone by policing and shaping the incoming traffic flows. This section reports 

on the implementation of a PC-based TDP router developed over a FreeBSD platform, which could be used 

as edge router for interfacing the time-driven switch prototype. In particular, this section focuses on the 

router architecture and on its programming procedure. 

TDP/TDS
Network

Asynch
Network

Asynch
Network

UTC

from GPS

Variable delay Variable delayConstant delay

 

Figure 5. Interoperation between TDP/TDS networks and asynchronous networks. 

III.A Software architecture 

In any generic router data plane, packets are moved from input ports to output ports going through 

three modules that perform input processing, forwarding, and output processing. The operations to be 

performed by a TDP router in each module are discussed here. 

Edge routers need to shape asynchronous traffic entering the TDP network. Consequently, their input 

module comprises mechanisms to classify incoming packets, identify the data flow they belong to, and 

select a TF in which they will be forwarded according to the current resource reservation setup. The 

evaluated forwarding TF determines the output buffer where packets will be stored by the output module. 
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Dummynet [19] is an ipfw (a FreeBSD firewall) extension for selecting packets using programmable 

rules and pass them through objects called pipes, which are used to emulate bandwidth and resource 

limitations, propagation delays and packet losses. The input module uses Dummynet to classify incoming 

asynchronous data flows and store packets up to one TF before they are fetched by the output module for 

transmission. 

The forwarding module processes packets according to the technology on which TDP is deployed, 

which does not require any modification for supporting TDP. This stems from the fact that TDP is just a 

packet-scheduling technique that can be deployed in the context of any packet-switching technology, 

without any requirements or impact on the forwarding module operation. 

The output module deploys a per-TF, per-output queuing system, where packets to be forwarded 

during the same TF through the same interface are buffered in the same queue. The queue in which each 

packet is stored is determined by both the input module, which decides the forwarding TF, and the 

forwarding module, which selects the output interface. The output module is also responsible for the timely 

transmission of all the packets stored in the queues to be flushed in the current TF. 

We decided to use the FreeBSD open-source operating system because it is a reference for 

networking-related projects for historical reasons (the TCP/IP network stack was first developed on the BSD 

platform), it is well documented in [20], and comes with high-quality traffic-management tools, such as the 

alternate queuing (ALTQ) framework [21], [22]. Because ALTQ includes many packet-scheduling policies 

such as First-In First-Out (FIFO), Weighted Fair Queuing (WFQ), Class Based Queuing (CBQ), hierarchical 

fair service curve (HFSC), TDP output module can be simply implemented as just another scheduling 

discipline. 

The CTR is provided to the router using a Symmetricom [23] GPS receiver PCI card that can generate 

interrupts at a programmable rate ranging between less than 1 Hz and 250 kHz. Two global variables are 

added to the FreeBSD kernel to hold the current TF and TC number; they are updated whenever these 

interrupts occur. 

The current development version supports only immediate forwarding and does not include signaling 

functions, so that TFs and TCs are allocated statically by manual configuration. Nevertheless, the prototype 

does not loose the generality and we paid the utmost attention to accurately avoid any design choice that 

could prevent us from adding signaling functions and implementing non-immediate forwarding in the 

future. 
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III.B Detailed programming procedure 

This user guide addresses to how to configure the TDP router’s parameters and networking in the 

scenario of TDP system. 

1. Configuration  

The test-bed is combined of the following main components: 

- TDP router 

- FλS switches 

- Some sources 

- Some destinations 

One of the possible configurations can be as follow: 

 

 

 

 

 

 

 

 

 

 

Figure 6. Simple configuration 

- From the same source 192.168.100.3, two traffic flows are transmitted to different destinations. 

They are all forwarded from the source to the interface em2 of the TDP router (192.168.100.2), 

to the em0 (192.168.10.2), and going out to the switches. 

- After the third switch, the 2 flows are split into 2 PHY links going to the 2 destinations 

(192.168.10.3 and 192.168.10.9) 
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In fact, this script only guides you to set up the TDP program that relates to the issue of routing 

table. Every step of setting the routing table and enabling the IPFW is given in the script file of the TDP 

router, which can be found in the directory /usr/TDPprogram/scripts. To enable the ALTQ, run the file 

in /usr/TDPprogram/altq-configuration-files/  

2. Script files 

The first step is understanding and learning to develop a simple script file used for configuring 

some networking aspects in the TDP router.In particular, this script file has to set up the ARP table, the 

routing table, some firewall rules. 

ARP table. TDP interfaces cannot currently handle the ARP protocol, so manually configuring 

ARP entries for these ones is required. The arp command could be used.For example, in the scenario 

presented in Figure x, there is only one TDP interface (em0) that has to reach two different destinations. 

Commands should be in this case: 

arp –s 192.168.10.3 [MAC address destination 1] 

arp –s 192.168.10.9 [MAC address destination 2] 

Routing table. Some routing tables could be required: it depends on the particular scenario. In the 

example one in Figure 1, destinations belong to the same IP subnet of the TDP router (the subnet 

192.168.10.0/24), so no routing is required. Note that the FλS switch is a Layer 2 one, so routing is not 

required in any scenario similar to the one in Figure 1, where destinations are directly connected to the 

switch. Routing could however be required if other routers are put after the FλS switch. A possible 

scenario could be: 
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Figure 7. Another configuration 

Here routing tables must be set in the TDP router using route command: 

route add [dest1]  [IP address of next-hop]  [netmask] 

route add [dest2]  [IP address of next-hop]  [netmask] 

etc… 

Firewall rules. Packets that arrive in a TDP router from an asynchronous network could become 

TDP ones (if a schedule is defined for them) or remain Best-Effort ones (if no schedules are defined for 

them). The procedure for defining a schedule will be presented in the following session, but here we 

want to point out how packets have to become TDP ones are intercepted by the system. The FreeBSD 

firewall ipfw is used for this purpose: a particular rule is required for each asynchronous flow that has to 

become synchronous. In the example, we have two video streaming asynchronous flows: the flow 1 

(192.168.100.3 → 192.168.10.3) and the flow 2 (192.168.100.3 → 192.168.10.9). Both have to enter the 

Time-Driven network becoming synchronous, so two rules for intercepting them are required in the TDP 

router. They are: 

ipfw add pipe 1 ip from 192.168.100.3 to 192.168.10.3 in recv em2 

ipfw pipe 1 config queue 100 

for the flow 1 and 

ipfw add pipe 2 from 192.168.100.3 to 192.168.10.9 in recv em2 

ipfw pipe 2 config queue 100 

for the flow 2. 

Note that the TDP router receives both flows through the em2 interface, so the last parameter of 

the just described rules is “in recv em2”. 

Note also that the ipfw default rule is “ipfw deny any from any”, so an “allow everything” rule is 

required, too. So type: 

ipfw add allow ip from any to any  

In order to allow all Best-Effort packets (pings, no-TDP flows, etc.) go through the network. 

PAY ATTENTION: 
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1. The order of the rules is very important! Follow the previous presented one (pipe1 rule, pipe 2 rule, 

pipe xxx rule,…,”allow everything” rule). 

2. Before changing a pipe or adding a new one, please type “ipfw flush” in order to prevent the just 

mentioned out-of-order mistakes…And then remember to add the “allow everything” rule again! So, 

if you want to change the pipe 2 of the previous example for intercepting packets that go to 

192.168.10.7 instead of the ones that go to 192.168.10.9, you will write: 

ipfw flush 

(type ‘y’ at the confirmation request) 

ipfw add pipe 1 ip from 192.168.100.3 to 192.168.10.3 in recv em2 

ipfw pipe 1 config queue 100 

ipfw add pipe 2 from 192.168.100.3 to 192.168.10.7 in recv em2 

ipfw pipe 2 config queue 100 

ipfw add allow ip from any to any 

Script file. All these commands could be inserted in a “script file” that you can run at system 

startup. For some example, see /usr/TDPprogram/scripts. 

3. TDP router’s parameters 

The file containing the TDP parameters is in the path /usr/TDPprogram/altqd-configuration 

In order to enable the altqd, type the command: 

altqd –f  [configuration file] 

An example of the ALTQ configuration files for configuring and enabling TDP is as follow: 

tdp 3 1000 3 10 100 500 2 

interface em0 bandwidth 1000M tdp 

pipe 1 2 10 

pipe 1 12 10 

pipe 2 5 6 

pipe 2 7 6 
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The first row consists of: 

- Maximum TDP buffer length (in number of packets) 

- Number of TF/TC 

- Maximum BE buffer length (in number of packets) 

- TDP packet length (in bytes) 

- TF duration (in µs) 

- Number of dummy net pipes 

The second row specifies the interface for TDP required by APTQ  

interface [name of the interface] bandwidth [rate of the interface] tdp 

The last rows contain Dummy net rules relating to input processing 

Pipe [flow]  [TF to transmit packets] [number of packets transmitted in the defined TF] 

To change into the Debug mode, replace the last parameter of the first row into Zero 

tdp 3 1000 3 10 100 500 0 

 The debug mode provides information about synchronization in the first console, and the index of TF 

in that packets are sent. To see the information of transmitting TF, use the command: 

tcpdump –i [NIC interface] –vv 

for example: 

tcpdump –i em0 -vv 

III. C Symmetricom time card 

Symmetricom bc637PCI is a receiver module which can work acquiring time from either GPS (GPS 

mode) or time code signals (Time code mode). If used in GPS mode, it provides a time reference aligned 

with UTC with the accuracy of better than 1�s to the host computer. It can transmit the information about 

the current time over the PCI bus whenever the PC makes a time request. This card can trigger a 

programmable periodic interrupt over the PCI bus used to perform TF update as explained in Section III.A. 

Since transmissions are driven by the CTR, packets should be sent out as soon as the TF begins. 

Driving these transmissions using the above described interrupt intrinsically introduces a certain level of 

imprecision and unpredictability due to the non-zero variable latencies with which a PC handles incoming 

interrupts. Three fundamental steps have to elapse before sending procedure can start: (i) the card has to 

acquire the PCI bus, (ii) the system has to react to the incoming interrupt calling the respective interrupt 
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handler, (iii) the interrupt handler has to acknowledge the interrupt to the card (i.e., it has to acquire the bus 

again for setting some card registers). These steps take an unpredictable amount of time because of the non-

real-time design of the PC architecture. This is an open issue we are investigating in order to find out a 

solution for guaranteeing very precise packet transmissions. 

Another open problem is related to the time that is necessary to synchronize the card with the GPS. 

First of all, the receiver has to acquire one or more satellites, and then its internal oscillator has to be 

synchronized in phase and in frequency with the UTC time provided by the GPS system. This procedure 

takes several minutes, resulting in absolutely unacceptable delay in a networking environment. 

The just discussed issue is certainly related to the internal design of the Symmetricom card, but it 

could also be due to the antenna type and positioning; there are in fact two antenna types that could be used 

with GPS timing receivers: roof antennas and window antennas. The first one provides a more accurate time 

reference but it requires at least three satellites always in view to maintain timing accuracy. The second one 

could be positioned near the window viewing only a portion of the sky; in fact it can work with an 

intermittent view of only one GSP satellite providing a less accurate time reference. Since we are using a 

roof antenna, its stringent requirement related to the view of the satellites and the degree of accuracy  to be 

provided could be the cause of the raised amount of time required for obtaining the system synchronization. 

However, since the accuracy provided by window antennas is typically microseconds to UTC (the accuracy 

provided by roof antennas is nanoseconds to UTC), this type of antenna should be enough for our system 

requirement, and probably further reduces the above discussed synchronization time. 

III. D Gigabit Ethernet controller 

The Intel 1000 MF Server Adapter is a high performance network card which can support many of the 

IEEE standards related to local networks. We are however more interested in some of its technical features: 

a busmaster DMA PCI card  rigged with a fairly good size transmission buffer (64 KB). 

Regarding the DMA transfers, the on-board DMA controller can use a certain number of DMA 

descriptors which can be programmed by users between 80 and 4096. Each packet must be associated with 

a descriptor in order to allow its transfer over the PCI bus. When a DMA transfer starts, all packets already 

associated with a descriptor are transferred in burst over the bus, forming a DMA chain. If TDP packets that 

must be sent out in a certain TF are transferred over the bus by a DMA chain and the amount of bytes 

related to them is less than 64 KB (the transmission buffer size), our TDP implementation performances 

increase, because links and PCI bus bandwidth would be better utilized. In fact, once packets are into the 
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transmission buffer, they can be sent out in burst mode without interruptions which would cause link 

bandwidth wastes; furthermore, burst transfers over the bus reduce the PCI resource acquisition overhead. 

Unfortunately there are some issues that clash with TDP requirements. We have already discussed 

about the variable delay which characterizes the TDP transmission procedure due to the unpredictable 

latencies with which the GPS receiver interrupt is handled by the system. But a further unpredictable delay 

is added by the above described transmission procedure. In fact, once the TDP scheduler driven by the GPS 

card interrupt begins packet transmissions, the Intel NIC has to start a DMA transfer, which takes an 

unpredictable amount of time for being performed. Furthermore, we don’t exactly know how the Intel NIC 

handles outgoing packets. We don’t exactly know how the internal buffer affects the time at which packets 

are sent out. 

The development of a high performance NIC where packets could be stored during the TF before the 

one in which they have to be sent would be the best solution that probably resolves these variable latency 

issues; this card should then be directly driven by the GPS timing signal in order to allow packets to go out 

as soon as possible. 

I. IV. Switch Controller 

The switch controller architecture is shown in Figure 8. 
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Figure 8.  Switch Controller Block Diagram 

Following is a short description of the hardware interconnections required in order to connect the 

three boards. 

Epsilon GPS Board 

• Tx/Rx : serial connection 9600 baud, 8 bit + 1 stop, odd parity 
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• GPS_lock : status of the link to GPS system: stable, unstable or unexistent 

• EBO_OK : status of correct working of the board 

• TOD : “time of day”, signal containing information about timestamp 

• Reset : reset signal 

• J1 : sine-wave signal @10 Mhz (5 db load 50 Ohm) 

• J2 : 1PPS, one Pulse Per Second (H > 2.4 V @ 50 Ohm, L < 0.8 V @ 50 Ohm) 

 

Switch Mindspeed M21151 

 

• Address[9:0] : Address Bus 

• Data [7:0] : Data Bus 

• xCS : Serial/parallel: active low I/O enable  

• xDS : Parallel I/0: data latch, serial I/0: serial clock (hysteresis)  

• R/xW : Parallel I/0: H = read, L = write  

• xSet : Hardware xSet terminal enables switching multiple channel configurations simultaneously 

(active low with internal pull up) 

• xRST : Hardware reset (active low with internal pull-up) 

• xTEST : Mindspeed test terminal (active low with internal pull-up) 

• Trig [1:0] : CLKTX/16 for use as trigger 

• xInDis : Hardware disable of all inputs (active low with internal pull-down)  

• xOutDis : Hardware disable of all outputs (active low with internal pull-down) 

• LOS : Global loss of signal  
 

Following are the major modules used for implementation of the controller 

• Opal Kelly XEM3001  

• Mindspeed M21151 

Next subsection describes the first module and second one will be described in subsequent one. 

IV.A FPGA Module 

Field Programmable Gate Arrays (FPGAs) have gone main stream. No longer are applications limited 

to performance and cost insensitive designs. The newest generation of FPGAs have hit performance and 

cost goals which allow a much wider spectrum of applications support. 

Now a day, more functions are needed in each protocol layer to provide flexible services in 

telecommunication networks. However, current telecommunication systems are often constructed by 

dedicated hardware. This is because data transmission requires high throughput and various bit-level 

manipulations must be performed, which CPUs or DSPs cannot handle well. Hence, current 

telecommunication circuits are far from rich in terms of flexibility. To help remedy this situation, we have 
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developed a FPGA based controller for ultra scalable switch for dynamic configuration of switch. Opal 

Kelly XEM3001 module has been used for switch controller. 

Opal Kelly XEM3001 

The XEM3001 is an experimentation module based on a 400,000-gate Xilinx Spartan-3 FPGA 

(XC3S400-4PQ208C). In addition to a high gate-count device, the XEM3001 utilities the high transfer rate 

of USB 2.0 for configuration downloads enabling an almost instant reprogramming of the FPGA. For 

flexible clocking, a multi-output clock generator can generate clock frequencies from 1 MHz to 150 MHz. If 

higher frequencies are needed, the clock multipliers in the FPGA can be used. The XEM3001 is ideally 

suited to prototype systems and integration into OEM devices where a USB interface, flexible hardware 

solution, or PC software interface would be useful. The XEM can easily be added to a new board design to 

provide turnkey USB integration with the convenience of our software programmer's interface and existing 

USB drivers.  

USB Interface: The XEM3001 uses a Cypress CY68013 FX2 USB microcontroller to make the XEM 

a USB 2.0 peripheral. USB interface makes FPGA downloads quick and data transfer much faster than the 

parallel port interfaces common on many FPGA experimentation boards. The USB interface also allows the 

XEM to be bus-powered which means it is ultra-portable requiring just a USB cable and the proper drivers 

to connect to any supporting PC, including laptops. 

EEPROM: A small serial EEPROM is attached to the USB microcontroller on the XEM3001, but not 

directly available to the FPGA. The EEPROM is used to store boot code for the microcontroller as well as 

PLL configuration data and a device identifier string. 

Multi Output Clock Generator (PLL): A multi-output, single-VCO PLL can provide up to five clocks, 

three to the FPGA and another two to the expansion connectors JP2 and JP3. The PLL is driven by a 48-

MHz signal output from the USB microcontroller. The PLL can generate frequency from 1-150MHz and is 

configured through the FrontPanel software interface. 

EXPANSION CONNECTORS: Three 0.1”-spaced expansion connectors (JP1, JP2, JP3) are available 

to connect the XEM to external devices. These connectors provide 3.3v power, ground, PLL outputs, and 88 

FPGA pins for general I/O. All expansion connectors are on a 100-mil grid so that the entire XEM can 

piggyback onto a standard 100-mil PCB board. 

 LEDS and PUSHBUTTONS: Eight LEDs and four pushbuttons are available for general use e.g. for 

debugging inputs and outputs. 



Technical Report      Multi-terabit per Second Scalable Switch Prototype 

 PC INTERFACE: The XEM3001 is fully supported by Opal Kelly’s FrontPanel software. 

FrontPanel augments the limited peripheral support with a host of PC-based virtual instruments such as 

LEDs, hex displays, pushbuttons, toggle buttons, and so on. Essentially, this makes PC a reconfigurable I/O 

board and adds enormous value to the XEM3001 as an experimentation or prototyping system. 

In addition to complete support within FrontPanel, the XEM3001 is also fully supported by the FrontPanel 

programmer’s interface (API), a powerful C++ class library (and Python wrapper) allowing you to easily 

interface your own software to the XEM. 

 The controlling software on PC is implemented in LABVIEW programming environment, 

interactions between PC and FPGA board will be based on a *.dll dynamic library compiled starting from a 

C++ class library provided with the board. This type of interface uses more than one 8-bit pipes in order to 

transfer data. This type of internal data division implies an additional overhead which decreases the transfer 

rate: instead of 40 MB/s (theoretically guaranteed by USB chip) we can reach 7 MB/s from FPGA and 12.5 

MB/s from PC. 

 One limiting factor is that the XEM is designed to abstract the USB interface from the user. In the 

interest of providing several available channels (called pipes) between the PC and the FPGA chip, some 

overhead is incorporated. USB itself is a shared bus, therefore the speed depends on what bandwidth other 

devices are consuming. 

 FPGA Implementation is done using Very High Speed Integrated Circuit Hardware Description 

Language (VHDL). The complete implementation can be divided into following blocks. 

SERIAL COMMUNICATION  

 In order to communicate with the GPS board via a serial interface (not RS232). This block 

implements the serial standard defined on the Epsilon board manual. The remote control interface allows 

remote configuration and remote status reporting of the board. The TTL interface operates at 9600 bauds 

and is set to 8 bits, 1 stop bit and odd parity. The protocol used is Master (Host) / Slave (EPSILON BOARD 

II) with a systematic reply to all messages with the following exceptions for which no reply is expected: 

- The time code message sent periodically. 

- The reset board command. 

Another serial block is implemented in order to receive the actual Time of the Day (TOD), which is 

transferred through serial link on another wire. This block is simple because it can only receive data. 
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GPS STATUS CONTROL 

 This block controls the status of the board analyzing two wires (GPS_LOCK and EBO_OK) and the 

messages received by the serial interface. It enables the clock counter and the data transfer between GPS 

board and PC via USB. 

PARALLEL/SPI BLOCK 

 This block is used to communicate with the Mindspeed Switch Board via serial or parallel interface 

(the board supports both interfaces). It can transfer data (state register which control the switch settings) 

between USB interface (PC) and Mindspeed board in both the directions (state register can be red or 

written). Data transferred by PC are not processed in this block: the bit-configuration of the registers is set 

by the Labview application. 

SWITCH STATUS CONTROL 

 This block controls the status of the board checking and analyzing the LOS signal. 

USB BLOCK 

 This block receives all messages sent by PC via USB and delivers the commands to one of the two 

boards (via parallel or serial interface) or to the status control blocks. 

COUNTER 

 The counter is a 64-bit register (it could be only 55 bit = log (150 years expressed in 100ns least 

count). On the PC a 64-bit register is used, which can be initialized with the UTC reference time and is 

incremented every 1/(10 million) seconds. This is a clock with the precision of 100 ns. The 10MHz clock is 

derived by the J1 connection of the Epsilon board. It's possible to use this clock because the FPGA can 

reach higher clocks (since 150 MHz). The exact value depends on the internal implemented connections and 

devices. 

STORAGE REGISTER 

 Time value (expressed in 100ns) is stored here i.e. when to apply changes settled into latch registers 

of the Mindspeed board. In order to change the switch configuration new setting values must be downloaded 

onto the Mindspeed board and a valid value must be pre-stored into this register. When the counter reaches 

this value the CONTROL LOGIC block enables the changes on the switch. In this way the change time can 

be with the precision of 100ns is used. 

CONTROL LOGIC 

 This block checks if the COUNTER and the STORAGE REGISTER contain the same value. If the 

values are same in that case the signal xDs is switched low in order to load the new values into the M21151 

board registers. 
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HARDWARE VHDL IMPLEMENTATION 

The whole control machine is composed by following blocks 

PC_GPS_MINDSPEED 

GPS_BOARD STATUS CONTROL 

MINDPSEED CONTROL 

CONFIGURATION MEMORY 

SPI INTERFACE 

SWITCH CONTROL 

USB INTERFACE 

Follows a description of the implemented blocks: 

CONFIGURATION MEMORY 

This entity allocates the RAM space to store the data to be transferred to the MINDSPEED switch 

registers. Memory is a bi-dimensional matrix with Length = 1024 cells and Width = 18 bit _ 10 register 

address bit + 8 data bit. The memory written operation is performed when the board is in the update status 

(status register at bits 5 and 6) and is read operation when the board is in the active status 

SPI INTERFACE 

This entity implements a FSM that follows the timing rules explained in Figure 9 and 10. The 

maximum input clock is 50 MHz, the SPI works at 25 MHz. 

 

Figure 9. Timing Diagram for Writing 
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Figure 10. Timing Diagram for Reading 

SDI and SDO are in reference to FPGA, inverted with respect to the Mindspeed board. As from the 

diagram we can see when a read/write operation is terminated, signal (r_term/w_term respectively) goes 

high until the control signal (read/write) goes down. In this way one can know when an operation is 

terminated. 

Master clock is the input clock (in this case 50 MHz), and SCLK is the output clock (in this case 25 

MHz). The output clock is halved of the input clock. 

An example of reading and writing operation is shown in figure 11. 

 

Figure 11. Example of reading and writing operations. 
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SWITCH CONTROL 

Switch Control is time driven and it controls the Minspeed status in the correct time slice. It is composed by 

following counters: TF_counter, TC_counter. 

Every second is divided into Time Cycles (TC) and every time cycle is divided into Time Frame (TF). The 

base unit is given by 1/(10 MHz) = 100 ns. The TC and TF duration can be modified by changing the inputs 

(TF_max is maximum number TF in one TC, TC_max is the maximum number TC in one second. 

Every TF a new configuration is cyclical downloaded to the Mindspeed board (by putting high the xCS 

signal). Data are stored into a memory that is read periodically. When whole memory is read and the bottom 

is reached then it operation restarts from the top (every TC). 

There are 2 input clocks: a clock at 10 MHz, which gives the download timing, and a clock at 1 Hz. When 

this second clock goes high the whole mechanism restarts even if it causes an interruption in the sequential 

memory download. 

If the download terminates before the 1 Hz clock goes high the FSM stops in a waiting status until the clock 

causes a restart. 

SOFTWARE IMPLEMENTATION 

Using the functions library provided by OpalKelly to communicate with the XEM3001 board, a C++ 

interface has been implemented in order to simplify all the interactions between the software running on PC 

and the circuit implemented into the FPGA. There is public function for every function of the board. 

Following is a simple description: 

class: 

switch_control 

methods: 

reset_device(); // resets the device cleaning everityng on the FPGA 

set_PLL(); // sets the PLL values (these values are fixed and not changeable) 

configure_FPGA(); // downloads the given bitstream onto the FPGA device 

set_clk_source(); // sets the clock source GPS_CLOCK / INTERNAL_CLOCK 

set_time_delay(); // sets the timeframe delay (anticipate) 
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init_switch(); // downloads the control values for the FSM (TF, TC, SEC length) 

reset_switch(); // sends a reset pulse to Mindspeed chip 

start_switch(); // starts the FSM loaded into the FPGA 

stop_switch(); // stops the FSM loaded into the FPGA 

memory_write(); // writes data into the FPGA memory 

memory_read(); // readds data from the FPGA memory 

direct_write(); // writes data directly onto the SPI bus 

direct_read(); // reads data directly from the SPI bus 

check_status(); // returns the value of the status register 

Hers is a brief explanation of methods: 
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Here follows a simple example: 

#include "geth_switch_class.h" 

: 

: 

void main (void) 

{ 

switch_control *test; 

test = new switch_control; 

test->reset_device(); 

test->set_PLL(); 

test->configure_FPGA(); 

: 
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: 

test->set_clk_source(GPS_CLOCK); 

test->set_time_delay(BOARD, 00 * 10); 

test->reset_switch(); 

test->init_switch(); 

: 

: 

: 

test->start_switch(); 

: 

: 

test->stop_switch(); 

delete (test); 

} 

IV. B. Mindspeed Switch Board 

The M21156, designed for today’s demanding telecom and datacom applications, is a low-power CMOS, 

high-speed 144 x 144 crosspoint switch with integrated CDRs, input equalization, and built-in system test 

features. 

To simplify board design and increase system reliability, each input has a high-jitter tolerant, low-jitter 

generation CDR with internal-loop filter. All CDRs use a common, single-frequency, external reference 

clock (19.44 MHz) for internal calibration and acquisition. Each CDR operates independently at any data 

rate from 1.0 to 1.6 Gbps, or 2.0 to 3.2 Gbps. As a result, the device supports any combination of OC-48, 

OC-48 FEC, Fibre Channel (1x, 2x, 10x), InfiniBand, Gigabit Ethernet and 10 Gbps Ethernet, or other types 

of traffic.  

To achieve the best possible signal, each CDR is preceded by a programmable input equalizer (IE), and each 

output includes Output Pre-emphasis (PE). The IE removes ISI jitter usually caused by PCB skin effect 

losses. The IE circuit opens the input data eye in applications where long PCB traces and cables are used. 
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As a result, the device exceeds the SONET requirements with jitter tolerance of 0.65 UI, and jitter 

generation of less than 1.5 mUI (rms) or 8 mUI (peak-to-peak). The PE provides a boost of the high 

frequency content of the output signal, such that the data eye remains open after passing through a long 

interconnect of PCB traces and cables. There are two amplitude settings and two duration settings that can 

be selected on a global basis. Pre-emphasis can be enabled on a per-channel basis. 

The device consumes as low as 18 W of power, typical, with all channels and CDRs operational. The 

PowerScaler
TM

 features offer dynamically scalable switch settings to further reduce power consumption. 

Each CDR can be independently bypassed and turned off if not in use. In addition, unused portions of the 

core can be automatically (SmartPower
TM

) or manually turned off, without affecting the operation of the 

remaining channels. 

Built-in system test features simplify design, verification, and production testing of the system. These 

features include a third generation PRBS transmitter/receiver, and the JitterMeter
TM

. The switch includes a 

pair of on-board 223-1 pseudo-random bit sequence transmitters (PRBS TX) and receivers (PRBS RX). In 

addition, the JitterMeter feature allows the host controller to measure jitter of an incoming signal. 

Three-stage switch fabrics with up to 10,368 x10,368 ports, carrying up to 33 Terabits per second of traffic, 

can be designed using this non-blocking switch, with multi-cast and broadcast abilities. 

All inputs and outputs are differential PCML (positive current mode logic) with supply voltages ranging 

from 1.2 V to 2.5 V. The output levels are programmable at 500 mV, 900 mV, and 1200 mV.  so, for 

applications that do not require an integrated CDR, the M21151 144 x 144 Crosspoint Switch with Input 

Equalization offers a very competitive solution. 
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This Mindspeed Switch Borad description document uses the following text styling conventions: 

CDR signal names and terminal numbers are listed with initial caps denoting each functional name part, 

with its related signal polarity indicated by a upper case 'N' or 'P'. Thus, data input signal names are 

indicated, for example as: 'DinP' and 'DinN'.  

A signal name and an associated CDR channel number (0 through 143) are indicated as DinP[n] and 

DinN[n] where 'n' is a channel number. 
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A register name is typed in all upper case preceded by the word register with each functional name part 

separated by an underscore, additionally, brackets group register bit numbers, and sub-function names are in 

initial caps such as for example only: 'register CONTROL_FUNCTION[5:4] Los_hyst'.  

Note: There is no space between the name and the first bracket, and a space after the last bracket. The 

underscore is used to break up parts of a register name, as required. 

To distinguish terminal names from internally generated signals the word ‘terminal’ is included in a 

reference to an input, output, or control, such as for example only: ‘the signal on terminal ABC controls 

function x', or ‘when the signal on terminal ABC = H function x is enabled'. 

Switch State Register Concept 

The M21131 switch-state controller uses a double-buffered register. The active configuration latch (ACL) 

holds the actual switch setting while the input configuration latch (ICL) holds either the actual switch setting 

or the next switch setting, depending on the mode of operation. The xSETmode register selects one of three 

modes of operation:  

Defalut Mode—core configuration updated after every register write. 

With xSETmode = 00h, the first mode is enabled and is the default mode after a reset. Consequently, the 

state of the switch changes with each write to a register determining the switch state. In the write mode, as 

soon as the signal on terminal xDS makes a low-to-high transition, the input channel specified by data for 

the output selected by the 10-bit address bus passes directly through the double buffer memory (ICL/ACL). 

As soon as the desired data pass through the ACL, the crosspoint core routes the selected input to the 

desired output to physically change the switch state. On the rising edge of xDS, this channel is stored 

(latched) into both the ICL and ACL. 

XSET Mode—core configuration updated after hardware xSET command. 

When register xSETmode = 10b the hardware xSET mode is enabled. In this mode, the desired switch state 

(which may contain one or more routing changes) is written first to the ICL, but the switch state does not 

change since the data is blocked from the ACL. With either the hardware or software xSET command, the 

contents of the ICL are transferred to the ACL, which physically changes the switch state in the switching 

core. This mode allows 1 to 72 channels to change at the same time. On the falling edge of the xSet signal, 

the ICL contents are passed to the ACL and the switch state changes. On the rising edge of the xSet signal, 

the switch state is latched. 
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XSET Mode—core configuration updated after software xSET command. 

When register xSETmode = 01b the software xSet mode is selected, and the desired switch routing is 

written into the appropriate registers to update the ICL without affecting the ACL. Then, a write of any 

value to the xSETcmd register will update the ACL with the current contents of the ICL, and the switch 

state changes. The interface is configured into the parallel mode by forcing terminal Ser/xPar low. 

 

IV. C. GUI Software architecture 

There are two software layers implemented. The first layer is C++ classes and public functions developed 

from OpalKelly library. The second layer is graphical user interface (GUI), developed using VC6++, which 

takes all classes and functions from the first layer as libraries. The GUI basically is a set of dialog boxes 

which react to events (e.g. button press, check box…) and translate inputs typed by a user into parameters, 

variables and send them to corresponding functions layer-1.  

 

Figure 12. Graphical user interface. 

Figure 12 shows the main dialog box. Hereafter we describe detail functionalities of each control group.  

Connection group let a user initiate a connection to a selected FPGA. Since one single PC has more than 

one USB ports and each can be connected to a separate controller, a check box F1/F2/F3 identifies which 

controller a user wishes to communicate with. A controller is identified through its unique ID string which is 

pre-written in EEPROM on the XEM3001.  
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Once a controller is selected, a “Connect” button should be pushed. This event initiates a switch-controller 

instant and triggers functions for following jobs: 

� Call reset_device(). 

� Call set_PLL(). 

� Download the configuration file (bit file) to configure the FPGA configure_FPGA(filename). 

� Call set_time_delay(…) if required.
1
 

� Call set_clock_source(…), can be GPS clock or internal clock. 

� Enable other functional buttons. 

“Disconnect” button is used to destroy the switch-controller instant, de-allocate any used memory and so 

on. It also triggers some function calls to set the Mindspeed chip back to default configuration (e.g. 

input/output voltage levels…). 

Configuration for Board X group is used to initiate the default switching table, update switching table and 

get the current switching table written into a file. When a button “Init SWX” is pushed, a series of functions 

are called as following: 

� Call to init_switch(…) to initiate the switching board X (i.e. X is either 0 or 1). Parameters 

transferred to this function are pre-defined in a file “parameters.h”. this function is very important 

since it define the range of memory used in FPGA to store the switching table, which late is read 

by a Mindspeed switch. More detail can be found in FPGA implementation section.  

� Write default switching table into FPGA memory. The default switching should be read from an 

existing file.  

� Call direct_write(…) to set xSet to hardware mode (see details for this switching in Mindspeed 

description section). 

� Enable other buttons for updating and getting configuration file. 

                                                 

1
 When f(…) stands for a call to a function which has parameter variables, detail of the function can 

be found in section… (describe layer 1 software). 
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The GUI is designed so that each control dialog box can work with two Mindspeed switching boards 

(accordingly two separate memories are initiated in the FPGA). Once the dialog box works with two 

switching boards, both of “Init Board0” and “Init Board1” should be activated before further steps. When a 

switch instant has been initiated and the default switching table has been written into FPGA memory, the 

FSM can start through pushing “Start SW”. We will be back to the start and stop of FSM later.  

Now we describe how a user can update the switching table. This action can be done through 

manipulations of checkboxes and edit boxes of the sub-group “INPUT” and those of sub-group “TF 

selection”. To avoid switching conflict at any output, the output value is fixed so that at any time, only a 

single input can be connected to an output. To update a switching path, a user must define which input 

should be connected to which output in which time-frame. A user check the corresponding checkbox, edit 

the input value and the time-frame values. Error messages will appear if a user put a wrong value (e.g. out 

of range if input value is minus or larger than 143…). After editing all necessary values, a user pushes 

“Update BX”, which does: 

� Call stop_switch(…) to stop the FSM if it is running in order to avoid conflicts (write from PC to 

FPGA memory and read to Mindspeed memory at the same time, same memory location). 

� Call memory_write(…) to update desired memory locations following updated values from edit 

boxes.  

� Call start_switch(…) to restart the FSM when updating finishes.  

Many formats of updating can be followed: 

� If input value of an “TF selection” edit box is F, the switching path to the corresponding output 

will be static (i.e. always connect the selected input to that output, no change according to time-

frame). 

� If input value of an “TF selection” edit box is O, the switching path will be setup for every ODD 

time-frames (i.e. time-frame 1, 3, 5, 7, …).  

� If input value of an “TF selection” edit box is E, the switching path will be setup for every EVEN 

time-frames (i.e. time-frame 2, 4, 6, 8, …).  

� If a user wishes to setup the switching path for a single time-frame, say time-frame 7, the input 

value must be 7-7.  
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� If a user wishes to setup the switching path for a range of continuous time-frames, say from time-

frame 7 to time-frame 11, the input value must be 7-11. 

� If a user wishes to setup the switching path for two discrete time-frames, say time frame 7 and 

time-frame 11, the input value must be 7,11. 

The button “Get File BX” is pushed, it does: 

� Call stop_switch(…) to stop the FSM if it is running. 

� Call memory_read(…) to read values from FPGA memory, output them into a structrured text file 

named “SWconfigBXFY.txt”. (X is either 0 or 1, Y is either 1 or 2 or 3).  

� Call start_switch(…) to start the FSM again. 

Switch group includes two buttons “Start SW” and “Stop SW”. When a user pushes “Start SW”, the 

following calls are triggered: 

� Call direct_write(…) and write 0x03 into 0x00BA of Mindspeed chip to enable I/O (500mV).  

� Call start_switch(…) to start the FSM. 

� Enable some control items (Get File BX, Update…). 

Once a “Stop SW” button is pushed, it simply stop the FSM.  

 

IV.D Detailed programming procedures 

Detail codes are more than 2000 lines of VC6++. See attached zip file “X-controller.zip” for details.  

V. Switching Fabric 

V.A. Topological design 

The switching fabric consists of 3 MindSpeed single switching matrix boards (board 0, board 1, board 

2) connected together. The block diagram is showed in Figure 12. Switch#1 consists of the combination of 

two of them are interconnected by means of electrical coaxial cables. The third board is used for the second 

switch (switch #2). The link between swtch#1 and switch#2 is optical fiber.  The packets assigned by TDP 

router to the corresponding time frame (which is a parameter to be set up in advance) are to be sent trough 

the optical fiber to transceiver 1 which is connected to switch#1. On the figure below you can see that data 
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coming from transceiver 1 go to input 71. Input 0 receives the idle pattern. Issues related to the idle pattern 

are covered in the next chapter. The data after entering switch#1, are split into two streams by board 0, one 

stream for each destination: one stream, named pipe 1 (assigned to 7, 14 TFs), goes to Output 68, the second 

stream, pipe 2 (12, 17 TFs), goes to Output 71. Outputs 68 and 71 of board 0 are connected electrically to 

Inputs 6 and 70 of board 1 respectively. On board 1 both streams join together and go to Output 2 of board 

1. Then the data are transmitted to the transceiver and then further via optical link, that can be either single 

mode or multimode. After passing through the optical link the transmitted data go through transceiver 6 to 

Input 6 of board 2 and then split again into two streams which are switched to Output 2, pipe 2 ( 12, 17 TFs 

) and to Output 70, pipe 1 (7,14 TFs). Then both streams are transmitted by transceiver 2 and 3 and two 

separated optical links to two destinations: destination1 and destination 2. 

 

Figure 13. Block diagram  

V. B Idle pattern and bit synchronization 

There are five level of synchronization in our data transport and switching architecture. The first level 

is bit synchronization, then we have the 8/10 modulation and byte synchronization, then Ethernet framing, 

TCP framing and GPS/UTC time framing. All levels depend on the previous one for successfully lock onto 

the data stream. 

When switching from one stream to the other all levels must be successfully locked by the client to 

allow the correct reception of the data stream. 
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Bit synchronization is the first level and it is necessary to reach locking in few microseconds after 

switching. After locking, data are received correctly at the bit level.  

Gigabit Ethernet resorts to 8/10 modulation for clock and data recovery (CDR). With the modulation 

the spectrum of the signal is compatible with optical transmission and data regeneration with an acceptable 

increase in bandwidth , in fact the effective data rata of Gigabit Ethernet after modulation is 1.25 Gb/s. The 

8/10 modulation make the use of PLL mandatory for CDR.  

The typical locking time of CDR’s PLL is of the order of milliseconds, if we refer to what chip 

manufactures specify in the manuals of Gb Ethernet controllers.  

We may indeed observe that our switch do indeed switches among different streams which are almost 

running at the same clock frequency, we may therefore expect that re-locking time should be reduced; how 

much is the question. 

Our measurements show that re-locking time after switching is of the order of few microseconds with 

the Intel Pro Gb Ethernet controller. Our findings are consistent with the literature, for instance the Lattice 

Semiconductor ORT82G5 3 Gb/s SERDES and our system exhibit comparable re-locking time. The Lattice 

Semiconductor ORT82G5 3 Gb/s SERDES is characterized by sub-microsecond locking time after signal 

detection (see: TN1025 by Lattice Semiconductor, April 2003). In fact the ORT82G5 switches its input to a 

local signal with an almost “on frequency” data rate when no useful signal is applied. The ORT82G 

switches periodically to its physical input to look for useful signal, being the PLL almost at the expected 

locking frequency of the input data flow. If no acceptable signal is present, the receiver input idles on the 

local signal. Similarly, but none identically, with our switching strategy, Gb Ethernet SERDES switches 

deterministically to the required input when data are expected to come.  The effect is the same: locking time 

is drastically reduced. 

Idle pattern is transmitted through the whole system in the following way: 

The Ethernet card of TDP router is connected to transceiver 4 in order to deliver idle pattern to 

switch#1.  Idle pattern is transmitted via optical link to Input0 of board 0 and then switched to Outputs 0, 1 

and 2. Output 0 is connected back to transceiver 4 and Output 2 is connected back to transceiver 1. Output 1 

is connected to board 1 of switch#1 with coaxial cable.  Switch #2 receives the idle pattern from the 

receiving side: transceiver 2 is connected to destination 1/pc and the idle pattern is transmitted to Input 0 

and then switched to Output 0 and further goes to transceiver 6. 
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V. C. Measurements 

The quality of digital signals transferred over analog media can be evaluated by standard procedures. 

Specifically, international standards must be applied to any specific kind of data transmission. Our 

laboratory oscilloscope is complete with Gigabit Ethernet 1000 base SX-LX mask test automatic procedure. 

Data are digitized in real time at 20 Gigasample/s or up to 1000 Gs/s equivalent repetitive sampling. A 

“golden PLL”, as required by the standard, is then employed for mask testing. Our system, composed by 

four electro-optical conversions and three switching layers, is compliant to Gb Ethernet international 

standards regarding mask testing. Mask tests are presented, reporting the quality of the signal along the 

signal path.  

 Summing up everything mentioned above the eye diagrams were obtained at different measurement 

points according to Ethernet 1000-baseSX/LX standards. The measurements were taken at the 4 points 

which are marked on Figure 13. Multi mode fibre was used for the optical link. Eye patterns are showed in 

figures 14-19. At points 3 and 4 measurements were repeated using a roll of 25 km single mode fibre.  

 

Figure 14. Eye Pattern with Mask: 1000B – SX/LX (1.25Gb/s) at location 1 
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Figure 15. Eye Pattern with Mask: 1000B – SX/LX (1.25Gb/s) at location 2 

 

Figure 16. Eye Pattern with Mask: 1000B – SX/LX (1.25Gb/s) at location 3 
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Figure 17. Eye Pattern with Mask: 1000B – SX/LX (1.25Gb/s) at location 4 

  

Figure 18. Eye Pattern with Mask: 1000B – SX/LX (1.25Gb/s) at location 3 with single mode Fibre  
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Figure 19. Eye Pattern with Mask: 1000B – SX/LX (1.25Gb/s) at location 4 

VI. Streaming Media Demonstration 

The performance of a network can be evaluated quantitatively and qualitatively. The network 

performance evaluation tools, that are able to send and receive packets, are used to evaluate distinctive 

parameters of networks i.e. mean throughput, peak throughput, latency, RTT … These tools produce 

measurements quantitative parameters of the network, but to evaluate qualitative performance of the same 

network, one can use a video streaming, audio and or text flows. 

The video streaming is a technology that allows the diffusion of audio and video service via Internet 

without downloading video or audio file, but one can see or hear them in real time. 

VI.A. Media streaming demonstration setup 

In a generic configuration to show the performance of the network a set up as shown in Figure X can 

be used. The test bed can stream more than one source at a time and, obviously, more than one streaming 

receivers. The demonstration configuration is made up of two streaming source on one pc and two 

streaming receivers on two different PCs. 
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Some streaming sources are able to send streams to specific client identified by an IP address by using 

both HTTP and UDP protocol. The client in order to see video-streaming sent by a server, must know the IP 

port that must be listened if the sending is in multicast format or the IP port and address if the sending is in 

unicast format. “Multicast” [23] is one way to use the IP protocol: one computer sends traffic to a special IP 

address (a pool is defined in the standard) and the clients can choose to register the source IP address and 

receive the traffic. The advantage is that in this way the source sends only one flow, but the disadvantage is 

that the network can be flooded by unused packets. Multicast is not always supported by tool and by switch 

or router: in that case unicast communication is used. 

 

Figure 20. Structure of a generic client-server network for streaming. 

 

In this demonstration the specific configuration is shown in Figure 20 and can be described as: 

• Server 1 (S1) has two streaming sources (V1 and V2). There are two instances of the same tool. 

• Client 1 (C1) receives the video streaming V1. 

• Client 2 (C2) receives the video streaming V2. 

The server can define the protocol to use, the destination IP address and port of the client. The clients can 

also define the protocol to use and the IP port that receives the streaming flows. In this case the 

communications are in unicast format. 

 In this test-bed the streaming server and the video client are the same program: VLC Media Player 

[24]. The same tool can be used as a local media player and implements also some features to sending 

streaming to a remote user. 
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VI. B. Detailed media-player programming  

VLC (VideoLAN Client) Media Player is a portable multimedia player that can support various audio 

and video formats: MPEG-1, MPEG-2, MPEG-4, DVD and VCDs formats. Besides it can support different 

streaming protocol.  The same player can be used also as server to stream audio or video and it can support 

unicast or multicast protocol for both IPv4 and IPv6 network. Our test is based on DVD streaming video 

because in this way the quality of the video is high and the network can be tested with a high load. 

VLC Media Player has features that depend on the Operating System. For Windows platform, it can 

support several input format (UDP, HTTP, DivX, DVD, audio CD, webcam …) with different formats 

(MPEG-1, -2, -3, -4, Ogg, WAV, RAW …) and codec for audio and video. The output format for streaming 

video can be UDP, HTTP or MMSH and the audio and video are in MPEG format. Further information 

about input and output format and codec can be found in the VLC web site [24]. The streaming server can 

send one source to different clients using different protocol and the same server PC can start different 

instances of VLC Media Player to send more than one sources to clients with the same protocol. 

VI. C. Streaming over wireless  

The previous set up shown before is using wired connections, but a similar set up can be used for 

wireless client, as showed in the Figure 21. 

 

Figure 21. Set up for Wireless streaming transmission 

In this configuration the border router (Network Interface) is directly connected to an AP which sends 

the packet to the wireless network. The mobile users must connect to the AP using the broadcasted SSID. 

For easiness (but without loss of generality) the clients have a static IP addresses and there are no MAC 

allowed list to restrict the accesses. 
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VII. Why TDS is Ultra Scalable 

To cope with the present Internet growth rate, an IP routing capacity of multi Tb/s is required. 

Existing architectures can handle a maximum load of about only one Tb/s (in a single chassis), however 

much higher switching capacities are required. To get beyond the limitations of conventional electrical 

switch technologies, alternative architectures based on optical interconnects are proposed (see, for example, 

�[1]�[2]). Optical interconnects allow, at least in principle, any desired interconnection topology without 

introducing crosstalk, thus minimizing noise sources. On the other hand, electrical switching with electrical 

interconnects cannot support the huge information flow from optical networks, while suffering from 

increased wire resistance, residual wire capacitance and inter-wire crosstalk as the length and/or the density 

of the electrical interconnections increases.  

 

VII. A. Switching Fabric Design 

In order to maximize the switching fabric scalability it is necessary to minimize the switching fabric 

complexity. The lowest complexity fabric are multistage Banyan interconnection networks, with switching 

complexity of O(a*N*lgaN), where N is the number of input/output and a is the size each switching block. 

 
Multistage           Crossbar

Switching elements a*N*lgaN N2

For N=256,  a=4 4K                       64K

For N=1024, a=4 20K                    1,000K
(factor of 16)

(factor of 50)
 

Figure Figure 22, is a switching complexity comparison between a multistage Banyan and a crossbar.  

 
Multistage           Crossbar

Switching elements a*N*lgaN N2

For N=256,  a=4 4K                       64K

For N=1024, a=4 20K                    1,000K
(factor of 16)

(factor of 50)  

Figure 22. Switching fabric complexity 

The main disadvantage of Banyans is space blocking, which means that a connection between an 

available input and an available output may not be possible because there is no available pass (route) 

through the switch interconnection network.  

One of the interesting properties TDS is that it significantly reduces the blocking phenomenon of 

Banyan based switching fabrics. Intuitively, In order to connect an available input to an available output 

there is another degree of freedom in the time domain. Namely, it is possible to select one of the K time 

frames (TFs), which mean that there are K possible choices. Figure  shows the blocking of a Banyan as a 
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function of the number time frames, K, per time cycles: K = 1, 4, 16, 32, 64 and 1000. Clearly, as the 

number of time frames per time cycle increases the blocking probability decreases (see a more detailed 

performance study in �[17]). 
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Figure 23. Blocking probability 

 TDS enables the construction of Banyan based fabrics, which are the most scalable switch design (in 

the next subsection it will be shown that TDS also minimizes buffer requirements). 

Figure 24 and 25 are two design examples of Banyan based fabrics with switching capacities of 

10Tb/s and 40Tb/s, respectively. The two designs are based on commercially available electrical switching 

blocks from Mindspeed Inc. that are interconnected either electronically or optically.  
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Figure 24. 10Tb/s switching fabric 

In comparison, optical switches with below 1�s switching have lower capacity, larger physical size 

and are much more expansive. The main challenge in constructing the large switching fabrics shown in 

figures 24 and 25 is interconnection. Electronic interconnection will not scale given their inherent problems. 

Consequently, the most promising approach is a hybrid opto-electronic switching fabric. As discussed in the 

next section, electronic may be also the most suitable approach for buffering. 
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Figure 25. 40Tb/s switching fabric 

VII.B Ultra Scalable Buffer Requirements 

TDS enables the switching of IP packets in time frames (TFs) without decoding the headers of each 

packet. Namely, TDS eliminates the need for header processing. TDS is based on the setting of a switching 

schedule of IP packets in TFs along a predefined route in the network.  

Clearly, if the IP packets in TFs arrive to the switch at the exact time no buffers are required. 

However, since the delay between TDS switches may not be an integer number of TFs it is necessary to 

align the incoming TFs on the optical links with the UTC TFs. Alignment consists in aligning the beginning 

and end of each time frame on each optical channel with the beginning and end of the UTC time frames. 

Realizing the alignment operation requires some buffers. 

Such buffer can be realized in the optical domain using programmable optical delay line, as shown, 

for example, in Figure 26. Skipping the detailed analysis of such programmable delay line, it is based on a 

non-trivial dynamic optical switch, which may introduce significant amount of power loss. In addition, such 

programmable optical delay lines are expensive. 
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Figure 26. Optical alignment 
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In comparison, electrical alignment, as shown in Figure 27, is simple with no power loss and low cost. 

Obviously, the electrical alignment matches the use of electronic switching. The electrical alignment is 

based on buffers implemented with electronic memory. An electrical alignment consists of a number of 

queues (usually 3) in which arriving IP packets are stored and IP packets to be switched are retrieved. 
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Non-Immediate Forwarding Queues 
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Switch Controller

Select-in
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- packets from the receiver are stored in one queue and 

- packets to the fabric are transferred from another queue

Thus, memory access BW = optical link BW
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The link delay is not 

integer multiple of time frames

 

Figure 27. Architecture of electrical alignment 

Note that the switch controller, which controls the electrical switching fabric, is also responsible for 

changing the configuration of the electrical alignment responsive to the current value of UTC. The 

alignment buffering requirements of the electronic alignment, shown in, are three queues each contains the 

bits transmitted during one time frame. For example, for 10Gb/s optical channel and 8�s TF is only 

3*80,000/8=30KB. Note the structure of electrical alignment buffer, shown in Figure 27, can be easily 

extended to support non-immediate forwarding (as discussed in Section I.C ). 

In essence, the switch controller, the switching fabric and the electronic alignment buffers are all what 

is needed for implementing ultra scalable TDS switch. 

VIII. Discussion 

As the Internet exponential traffic growth continuous, in the foreseeable future, it will be due more 

and more to (all IP) streaming media applications. Streaming media applications will “fill-up” the optical 

“pipes.” One of the main remaining challenges is how to efficiently switch this huge amount of IP traffic. 

UTC-based TDS provides the necessary switching solution, which has following desired requirements for 

streaming applications: 

- Switch and forward IP packets as a whole (i.e., IP packets are remained intact at all times). 

- Provisioning granularity from 1Mb/s to full optical channel capacity. 



Technical Report      Multi-terabit per Second Scalable Switch Prototype 

- Minimum delay with constant jitter and no packet loss. 

- Multicast and broadcast of IP packets with any allocated capacity with the above mentioned properties. 

Furthermore, UTC-based TDS facilitates the most scalable electronic design with optimal switch 

complexity (O[a*N*lgaN]), minimum electronic buffers (1-3 time frames) and optimal switching speedup of 

one. However, in order to actually construct ultra scalable switches it is necessary to overcome the 

switching modules interconnection problem.  

Since optical transmission has superior interconnection properties over electric wires, it has been 

proposed to use optical interconnects. However, such an approach is novel and requires further research and 

development. The optical interconnection objective of high-capacity electronic switching modules is:  

“maximizing the density of optical interconnections, while minimizing power dissipation for a 

given distance bound among electronic switching modules (each consists of one or more electronic 

switching devices).” 

A UTC-based TDS switch prototype, shown in Error! Reference source not found., using 

Mindspeed cross-point devices (M21151) is being implemented at the University of Trento. Each of the 

M21151 cross-point is a single electronic chip with 144 inputs and outputs, each input/output has capacity 

of 3.2Gb/s or total raw capacity of 460Gb/s. The cost of such cross-point chip is around 500 USD or 1 dollar 

per (raw) Gb/s! Moreover, the switching time for changing the input/output permutation is less than 10ns. 

The switch prototype is using UTC-base time-driven priority software developed at the Politecnico di 

Torino. 

 

Figure 28. Early TDS prototype 

Although UTC-based TDS is optimally designed to support streaming media applications it is straight  

forward how to combine its operation with “best effort” (non-scheduled) IP/MPLS, as shown in Figure 29.  
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This is done by adding an IP packet filter before the alignment sub-system and then diverting non-scheduled 

IP packets to IP/MPLS switching module. 
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Figure 29. Hybrid IP/MPLS and TDS system 
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